Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{x-2}{2017}+1+\frac{x-3}{2018}+1=\frac{x-4}{2019}+1+\frac{x-5}{2020}+1\)
\(\Rightarrow\frac{x+2015}{2017}+\frac{x+2015}{2018}-\frac{x+2015}{2019}-\frac{x+2015}{2020}=0\)
\(\Rightarrow\left(x+2015\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
Mà \(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}>0\)
\(\Rightarrow x+2015=0\Rightarrow x=-2015\)
\(S=\left\{-2015\right\}\)
Gợi ý :
Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)
Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)
Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)
bài 3
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)
=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x=100
a, Làm
\(\frac{x+1}{2020}+\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x+5}{2016}+\frac{x+6}{2015}\)
<=>\(\frac{x+2021}{2020}+\frac{x+2021}{2019}+\frac{x+2021}{2018}=\frac{x+2021}{2017}+\frac{x+2021}{2016}+\frac{x+2021}{2015}\)
<=>\(\left(x+2021\right)\left(\frac{1}{2020}+\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)
<=> x+2021=0
<=> x=-2021
Kl:......................
b, Làmmmmm
\(\frac{2-x}{2004}-1=\frac{1-x}{2005}-\frac{x}{2006}\)
<=> \(\frac{2006-x}{2004}=\frac{2006-x}{2005}+\frac{2006-x}{2006}\)
<=> \(\left(2006-x\right)\left(\frac{1}{2004}-\frac{1}{2005}-\frac{1}{2006}\right)=0< =>2006-x=0\)
<=> x=2006
Kl:..............
\(\frac{2-x}{2017}-1=\frac{1-x}{2018}-\frac{x}{2019}\)
\(\Leftrightarrow\) \(\frac{2-x}{2017}+1=\frac{1-x}{2018}+1-\frac{x}{2019}+1\)
\(\Leftrightarrow\) \(\frac{2019-x}{2017}=\frac{2019-x}{2018}-\frac{2019-x}{2019}\)
\(\Leftrightarrow\) \(\frac{2019-x}{2017}-\frac{2019-x}{2018}+\frac{2019-x}{2019}=0\)
\(\Leftrightarrow\) \(\left(2019-x\right)\left(\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\right)=0\)
Mà \(\left(\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\right)\ne0\)
\(\Rightarrow\) \(2019-x=0\) \(\Leftrightarrow\) \(x=2019\)
\(\Rightarrow\) \(S=\left\{2019\right\}\)
\(\frac{x-3}{2017}+\frac{x-2}{2018}=\frac{x-2018}{2}+\frac{x-2017}{3}\\\Leftrightarrow \left(\frac{x-3}{2017}-1\right)+\left(\frac{x-2}{2018}-1\right)=\left(\frac{x-2018}{2}-1\right)+\left(\frac{x-2017}{3}-1\right)\\\Leftrightarrow \frac{x-2020}{2017}+\frac{x-2020}{2018}=\frac{x-2020}{2}+\frac{x-2020}{3}\\ \Leftrightarrow\frac{x-2020}{2017}+\frac{x-2020}{2018}-\frac{x-2020}{2}-\frac{x-2020}{3}=0\\ \Leftrightarrow\left(x-2020\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2}-\frac{1}{3}\right)=0\\ \Leftrightarrow x-2020=0\left(Vi\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2}-\frac{1}{3}\ne0\right)\\ \Leftrightarrow x=2020\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{2020\right\}\)
\(\frac{x-3}{2017}+\frac{x-2}{2018}=\frac{x-2018}{2}+\frac{x-2017}{3}\)
\(\Leftrightarrow\) \(\frac{x-3}{2017}-1+\frac{x-2}{2018}-1=\frac{x-2018}{2}-1+\frac{x-2017}{3}-1\)
\(\Leftrightarrow\) \(\frac{x-2020}{2017}+\frac{x-2020}{2018}=\frac{x-2020}{2}+\frac{x-2020}{3}\)
\(\Leftrightarrow\) \(\frac{x-2020}{2017}+\frac{x-2020}{2018}-\frac{x-2020}{2}-\frac{x-2020}{3}=0\)
\(\Leftrightarrow\) (x - 2020)(\(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2}-\frac{1}{3}\)) = 0
\(\Leftrightarrow\) x - 2020 = 0
\(\Leftrightarrow\) x = 2020
Vậy S = {2020}
Chúc bn học tốt!!
Ta có \(\frac{2015}{2016}.x+\frac{2016}{2017}.x+\frac{2017}{2018}.x=\frac{2018}{2019}.x\)
<=>\(\frac{2015}{2016}.x+\frac{2016}{2017}.x+\frac{2017}{2018}x-\frac{2018}{2019}x=0\)
<=>x\(\left(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}-\frac{2018}{2019}\right)=0\)
Vì \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}-\frac{2018}{2019}\) không thể bằng 0
Vậy x=0
Ta có 1 nghiệm thỏa mãn S=\(\left\{0\right\}\)
d) x+1/2019 + x+3/2017 = x+5/2015 + x+7/2013
<=> x+1/2019 + x+3/2017 - x+5/2015 - x+7/2013 =0
<=> ( x+1/2019 + 1) + ( x+3/2017 + 1) - ( x+5/2015 + 1) - ( x+7/2013 +1) = 0
<=> ( x+1+2019/2019) +(x+3+2017/2017) - ( x+5+2015/2015) - ( x+7+2013/2013) =0
<=> x+2020/2019 + x+2020/2017 - x+2020/2015 - x+2020/2013 =0
<=> (x+2020)× ( 1/2019 + 1/2017 - 1/2015 - 1/2013) =0
Mà 1/2019 + 1/2017 - 1/2015 - 1/2013 khác 0
=> x+2020 =0
=> x = -2020
\(\left(x-1\right)=\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow\left(x-1\right)-\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
HOẶC\(x-1=0\Leftrightarrow x=1\)(NHẬN)
HOẶC\(x-3=0\Leftrightarrow x=3\)(NHẬN)
VẬY: tập ngiệm của pt là S={1;3}
buithianhtho làm cách này mà ko có máy tính thì đến bao giờ ?
\(\dfrac{x-3}{2017}+\dfrac{x-2}{2018}+\dfrac{x-1}{2019}=3\)
\(\Leftrightarrow\dfrac{x-3}{2017}-1+\dfrac{x-2}{2018}-1+\dfrac{x-1}{2019}-1=3-1-1-1\)
\(\Leftrightarrow\dfrac{x-3-2017}{2017}+\dfrac{x-2-2018}{2018}+\dfrac{x-1-2019}{2019}=0\)
\(\Leftrightarrow\dfrac{x-2020}{2017}+\dfrac{x-2020}{2018}+\dfrac{x-2020}{2019}=0\)
\(\Leftrightarrow\left(x-2020\right)\left(\dfrac{1}{2017}+\dfrac{1}{2018}+\dfrac{1}{2019}\right)=0\)
Vì \(\dfrac{1}{2017}+\dfrac{1}{2018}+\dfrac{1}{2019}\ne0\)
\(\Leftrightarrow x-2020=0\)
\(\Leftrightarrow x=2020\)
Vậy....
\(\frac{x-3}{2017}\)+\(\frac{x-2}{2018}\)+\(\frac{x-1}{2019}\)=3
= 4074342(x-3)+4072323(x-2)+4070306(x-1)=24653843442
=07342x- 12223026+ 4072323x-8144646+4070306x- 4070306= 24653843442
12216971x- 24437978= 24653843442
12216971x=24653843442+24437978
12216971x= 24678281420
x= 2020