Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giai phuong trinh
1, (x-2)(x-1)(x-8)(x-4)=4x^2
2, (x^2+5x+6)(x^2+20x+96)=4x^2
3, 3(x^2+2x-1)^2-2(x^2+3x-1)^2+5x^2=0
\(\frac{4x}{x^2+4x+3}-1=6\left(\frac{1}{x+3}-\frac{1}{2x+2}\right)\) \(ĐK:x\ne-1;x\ne-3\)
\(\Leftrightarrow\frac{4x}{x^2+4x+3}-\frac{x^2+4x+3}{x^2+4x+3}=6\left[\frac{2\left(x+1\right)}{2\left(x+3\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)\left(x+3\right)}\right]\)
\(\Leftrightarrow\frac{4x-x^2-4x-3}{x^2+4x+3}=6\left[\frac{2\left(x+1\right)-x-3}{2\left(x+3\right)\left(x+1\right)}\right]\)
\(\Leftrightarrow\frac{-x^2-3}{x^2+4x+3}=6\left[\frac{2x+2-x-3}{2\left(x^2+4x+3\right)}\right]\)
\(\Leftrightarrow\frac{-x^2-3}{x^2+4x+3}=\frac{6\left(x-1\right)}{2\left(x^2+4x+3\right)}\)
\(\Leftrightarrow\frac{-x^2-3}{x^2+4x+3}=\frac{3\left(x-1\right)}{x^2+4x+3}\)
\(\Leftrightarrow-x^2-3=3x-3\)
\(\Leftrightarrow-x^2-3x=0\)
\(\Leftrightarrow-x\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\left(loại\right)\end{cases}}\)
Vậy x = 0
\(ĐK:x\ne\frac{-1}{2};x\ne\frac{-3}{2}\)
\(\frac{3}{2x+1}=\frac{6}{2x+3}+\frac{8}{4x^2+8x+3}\)
\(\Leftrightarrow\frac{3}{2x+1}-\frac{6}{2x+3}=\frac{8}{4x^2+8x+3}\)
\(\Leftrightarrow\frac{3\left(2x+3\right)-6\left(2x+1\right)}{\left(2x+1\right)\left(2x+3\right)}=\frac{8}{4x^2+8x+3}\)
\(\Leftrightarrow\frac{6x+9-12x-6}{4x^2+8x+3}=\frac{8}{4x^2+8x+3}\)
\(\Leftrightarrow-6x+3=8\)
\(\Leftrightarrow x=-\frac{5}{6}\)
Vậy ...
Bài này và bài trước bạn đăng chẳng khác gì nhau cả
\(x=0\) không phải nghiệm, phương trình tương đương:
\(\frac{4}{x+\frac{6}{x}-5}+\frac{3}{x+\frac{6}{x}-7}=6\)
Đặt \(x+\frac{6}{x}-5=a\) phương trình trở thành:
\(\frac{4}{a}+\frac{3}{a-2}=6\Leftrightarrow4\left(a-2\right)+3a=6a\left(a-2\right)\)
Bạn tự giải tiếp
ĐK: x khác -1 và x khác 1.
\(PT\Leftrightarrow\frac{7x.\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{5x.\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x+21}{\left(x-1\right)\left(x+1\right)}=0\)
<=> 7x2 + 7x - 5x2 + 5x + x + 21 = 0
<=> 2x2 + 13x + 21 = 0
<=> 2x2 + 6x + 7x + 21 = 0
<=> 2x.(x + 3) + 7.(x + 3) = 0
<=> (x + 3).(2x + 7) = 0
<=> x + 3 = 0 hoặc 2x + 7 = 0
<=> x = -3 hoặc x = -7/2
Vậy S = {-7/2; -3}.
ĐKXĐ: \(x\ne\left\{1;2;3;6\right\}\)
Nhận thấy \(x=0\) không phải nghiệm, pt tương đương:
\(\frac{4}{x+\frac{6}{x}-5}+\frac{3}{x+\frac{6}{x}-7}=6\)
Đặt \(x+\frac{6}{x}-5=a\) phương trình trở thành:
\(\frac{4}{a}+\frac{3}{a-2}=6\Leftrightarrow4\left(a-2\right)+3a=6a\left(a-2\right)\)
\(\Leftrightarrow6a^2-19a+8=0\Rightarrow\left[{}\begin{matrix}a=\frac{8}{3}\\a=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+\frac{6}{x}-5=\frac{8}{3}\\x+\frac{6}{x}-5=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-\frac{23}{3}x+6=0\\x^2-\frac{11}{2}x+6=0\end{matrix}\right.\) \(\Rightarrow x=...\)
\(\frac{x}{2x-6}+\frac{x}{2x+2}=\frac{2x^2}{x^2+2x-3}\)
\(ĐKXĐ:x^2+2x-3=\left(x+1\right)\left(x-3\right)\\ \Rightarrow x\ne-1;x\ne3\)
\(\frac{x}{2x-6}+\frac{x}{2x+2}=\frac{2x^2}{\left(x-3\right)\left(x+1\right)}\)
\(\Leftrightarrow\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x^2}{\left(x-3\right)\left(x+1\right)}\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}=\frac{2x^2}{\left(x-3\right)\left(x+1\right)}\)
\(\Rightarrow x\left(x+1\right)+x\left(x-3\right)=4x^2\)
\(\Leftrightarrow x^2+x+x^2-3x=4x^2\)
\(\Leftrightarrow2x^2-2x=4x^2\)
\(\Leftrightarrow2x^2-4x^2-2x=0\)
\(\Leftrightarrow-2x^2-2x=0\)
\(\Leftrightarrow2x\left(-x-1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}2x=0\\-x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\left(N\right)\\x=-1\left(L\right)\end{cases}}\)
Tự kết luận tập nghiệm bạn nhé!
x2+2x-3 = (x+1)(x-3)
vậy MSC = 2(X+1(X-3) qui đồng mẫu số r làm dc r, đk x khác 1; -3
a) Ta có: \(\left(x+1\right)^4+\left(x-3\right)^4=0\)
Nhận thấy: \(\hept{\begin{cases}\left(x+1\right)^4\ge0\left(\forall x\right)\\\left(x-3\right)^4\ge0\left(\forall x\right)\end{cases}\Rightarrow}\left(x+1\right)^4+\left(x-3\right)^4\ge0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^4=0\\\left(x-3\right)^4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\x=3\end{cases}}\) (mâu thuẫn)
=> pt vô nghiệm
b) \(x^4+2x^3-4x^2-5x-6=0\)
\(\Leftrightarrow\left(x^4-2x^3\right)+\left(4x^3-8x^2\right)+\left(4x^2-8x\right)+\left(3x-6\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+4x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x^3+3x^2\right)+\left(x^2+3x\right)+\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)=0\)
Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(\forall x\right)\)
=> \(\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
a, 2x(x + 5) - (x - 3)2 = x2 + 6
<=> 2x2 + 10x - (x2 - 6x + 9) = x2 + 6
<=> 2x2 + 10x - x2 + 6x - 9 - x2 = 6
<=> 16x = 6 + 9
<=> 16x = 15
<=> x = 15/16
Vậy...
b, (4x + 7)(x - 5) - 3x2 = x(x - 1)
<=> 4x2 - 20x + 7x - 35 - 3x2 = x2 - x
<=> 4x2 - 20x + 7x - 3x2 - x2 + x = 35
<=> -12x = 35
<=> x = -35/12
Vậy...