Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phân tích mẫu thành nhân tử r áp dụng \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\) sau đó rút gọn quy đồng
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\) \(\left(ĐKXĐ:x\ne0;x\ne-4;x\ne-5;x\ne-6;x\ne-7\right)\)
\(\Leftrightarrow\frac{1}{x^2+4x+5x+20}+\frac{1}{x^2+5x+6x+30}+\frac{1}{x^2+6x+7x+42}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x\left(x+4\right)+5\left(x+4\right)}+\frac{1}{x\left(x+5\right)+6\left(x+5\right)}+\frac{1}{x\left(x+6\right)+7\left(x+6\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{\left(x+6\right)\left(x+7\right)+\left(x+4\right)\left(x+7\right)+\left(x+4\right)\left(x+5\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{\left(x^2+13x+42\right)+\left(x^2+11x+28\right)+\left(x^2+9x+20\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{x^2+13x+42+x^2+11x+28+x^2+9x+20}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3x^2+33x+90}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3\left(x^2+11x+30\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)=18.3\left(x^2+11x+30\right)\)
\(\Leftrightarrow\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)=54\left(x+5\right)\left(x+6\right)\)
\(\Leftrightarrow\left(x+4\right)\left(x+7\right)=54\)
\(\Leftrightarrow x^2+11x+28-54=0\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow x^2+13x-2x-26=0\)
\(\Leftrightarrow x\left(x+13\right)-2\left(x+13\right)=0\)
\(\Leftrightarrow\left(x+13\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+13=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-13\left(tm\right)\\x=2\left(tm\right)\end{cases}}\)
Câu hỏi của Phạm Tiến Dũng new - Toán lớp 9 - Học toán với OnlineMath
Ta có:
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}\) \(=\frac{1}{18}\)
\(\Leftrightarrow\)\(\frac{1}{\left(x+4\right)\left(x+5\right)}\) \(+\frac{1}{\left(x+5\right)\left(x+6\right)}\) \(+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}\) \(=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow x^2+11x-26=0\Leftrightarrow\hept{\begin{cases}x_1=2\\x_2=-13\end{cases}}\)
Vậy nghiệm của phương trình là {2;-13}
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\left(x\ne-4;-5;-6;-7;-8\right)\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{x}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow x^2+11x+28=54\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+13=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-13\left(tm\right)\end{cases}}}\)
vậy x=2; x=-13
Bài làm:
đkxđ: \(x\ne\left\{-4;-5;-6;-7\right\}\)
Ta có: \(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow x^2+11x+28=54\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+13=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-13\end{cases}}\)
Vậy tập nghiệm của PT \(S=\left\{-13;2\right\}\)
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{x+7}{\left(x+4\right)\left(x+7\right)}-\frac{x+4}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\left(x+4\right)\left(x+7\right)=18\cdot3=54\)
\(\Rightarrow x^2+11x+28-54=0\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)
Vậy x \(\in\left\{-13;2\right\}\)
\(\left(3x-2\right)\left(4x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\4x+5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{5}{4}\end{cases}}\)
ĐKXĐ: x khác -4;-5;-6;-7
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{\left(x+4\right).\left(x+5\right)}+\frac{1}{\left(x+5\right).\left(x+6\right)}+\frac{1}{\left(x+6\right).\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{x+7-x-4}{\left(x+4\right).\left(x+7\right)}=\frac{1}{18}\Rightarrow3.18=x^2+11x+28\)
\(\Rightarrow x^2+11x-26=0\)
\(\Rightarrow\left(x-2\right).\left(x+13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-13\end{cases}\left(tm\right)}\)
Vậy...
\(ĐKXĐ:x\ne-4;x\ne-5;x\ne-6;x\ne-7\)
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{3}{54}\)
\(\Rightarrow\left(x+4\right)\left(x+7\right)=54\)
\(\Leftrightarrow x^2+11x+28=54\)
\(\Leftrightarrow x^2+11x-26=0\)
Ta có \(\Delta=11^2+4.26=225,\sqrt{\Delta}=15\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-11+15}{2}=2\\x=\frac{-11-15}{2}=-13\end{cases}}\)
Vậy tập nghiệm S = {2;-13}
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x\left(x+4\right)+5\left(x+4\right)}+\frac{1}{x\left(x+5\right)+6\left(x+5\right)}+\frac{1}{x\left(x+6\right)+7\left(x+6\right)}=\frac{1}{18}\)(điều kiện: \(x\ne\left\{-4;-5;-6;-7\right\}\) )
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow54=\left(x+4\right)\left(x+7\right)\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow x\left(x+13\right)-2\left(x+13\right)=0\Leftrightarrow\left(x+13\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=-13\\x=2\end{cases}}\)(thỏa mãn ĐKXĐ)
Vậy tập nghiệm của pt là: \(S=\left\{-13;2\right\}\)
Lâu lắm không làm nhể
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x^2+4x+5x+20}+\frac{1}{x^2+5x+6x+30}+\frac{1}{x^2+6x+7x+42}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x.\left(x+4\right)+5.\left(x+4\right)}+\frac{1}{x.\left(x+5\right)+6.\left(x+5\right)}+\frac{1}{x.\left(x+6\right)+7.\left(x+6\right)}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{\left(x+4\right).\left(x+5\right)}+\frac{1}{\left(x+5\right).\left(x+6\right)}+\frac{1}{\left(x+6\right).\left(x+7\right)}=\frac{1}{18}\)
Dùng công thứ \(\frac{1}{x.\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)
Khi đó \(\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{x+7}{\left(x+4\right).\left(x+7\right)}-\frac{\left(x+4\right)}{\left(x+4\right).\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow\frac{3}{\left(x+4\right).\left(x+7\right)}=\frac{1}{18}\Rightarrow\left(x+4\right).\left(x+7\right)=54\)
\(\Rightarrow\hept{\begin{cases}x+4=6\\x+7=9\end{cases}}\)hoặc \(\hept{\begin{cases}x+4=-6\\x+7=-9\end{cases}}\)
Suy ra \(x=3\)hoặc \(x=-3\)