K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2015

ĐK: \(3-2x\ge0\Leftrightarrow x\le\frac{3}{2}\)

Khi đó; \(\left|2x-3\right|=3-2x\text{ (do }2x-3\le0\text{)}\)

\(pt\Leftrightarrow8+3-2x=2\sqrt{3-2x}\Leftrightarrow\left(\sqrt{3-2x}\right)^2-2\sqrt{3-2x}+1=-7\)

\(\Leftrightarrow\left(\sqrt{3-2x}-1\right)^2=-7\text{ (vô nghiệm)}\)

16 tháng 11 2017

dùng viet

7 tháng 9 2016

a, -4x + 5 > -2
<=> -4x > -7

<=> x< \(\frac{7}{4}\)

7 tháng 9 2016

Giải các phương trình, bất phương trình sau:

a,-4x+5>-2

b,(√3−2)3x< hoặc = 12

c,giá trị tuyệt đối của 2x+7 =3

a, -4x + 5 > -2
<=> -4x > -7

<=> x< 7/4

25 tháng 1 2018

Chọn đáp án A

x 2  + 2x - 5 = 0 phương trình có ac < 0 ⇒ phương trình có 2 nghiệm phân biệt

Theo định lí Vi-et ta có:

a: \(\text{Δ}=\left[-\left(m+3\right)\right]^2-4\cdot2\cdot m\)

\(=\left(m+3\right)^2-8m\)

\(=m^2-2m+9=\left(m-1\right)^2+8>0\forall m\)

=>Phương trình (1) luôn có hai nghiệm phân biệt

b: Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{m+3}{2}\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m}{2}\end{matrix}\right.\)

\(A=\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}\)

\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{\dfrac{1}{4}\left(m+3\right)^2-4\cdot\dfrac{m}{2}}\)

\(=\sqrt{\dfrac{1}{4}\left(m^2+6m+9\right)-2m}\)

\(=\sqrt{\dfrac{1}{4}m^2+\dfrac{3}{2}m+\dfrac{9}{4}-2m}\)

\(=\sqrt{\dfrac{1}{4}m^2-\dfrac{1}{2}m+\dfrac{9}{4}}\)

\(=\sqrt{\dfrac{1}{4}\left(m^2-2m+9\right)}\)

\(=\sqrt{\dfrac{1}{4}\left(m^2-2m+1+8\right)}\)

\(=\sqrt{\dfrac{1}{4}\left(m-1\right)^2+2}>=\sqrt{2}\)

Dấu '=' xảy ra khi m-1=0

=>m=1

bài 1

\(\frac{x-1}{x+3}>0\)   \(\left(x\ne-3\right)\)

   TH1  \(\hept{\begin{cases}x-1>0\\x+3< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x>1\\x< -3\end{cases}}\)(vô lí)

      TH2 \(\hept{\begin{cases}x-1< 0\\x+3>0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x< 1\\x>-3\end{cases}}\)\(\Rightarrow-3< x< 1\)

bài 2 . với dạng này ta áp dụng bđt \(|x|< A\Leftrightarrow\orbr{\begin{cases}x< -A\\x>A\end{cases}}\)

|x - 5| >2

\(\Leftrightarrow\orbr{\begin{cases}x-5>2\\x-5< -2\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x>7\\x< 3\end{cases}}\)

#mã mã#