K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2017

\(\frac{x}{x-1}=\frac{x+4}{x+1}\Leftrightarrow x^2+x-\left(x^2+3x-4\right)=0\)

\(\Leftrightarrow-2x+4=0\Leftrightarrow x=2\)

-----------------------------------------------------------------

\(\frac{3}{x-2}=\frac{2x-1}{x-2}-x\Leftrightarrow\frac{3}{x-2}=\frac{2x-1}{x-2}-\frac{x^2-2x}{x-2}\)

\(\Leftrightarrow2x-1-x^2+2x-3=0\Leftrightarrow-\left(x-2\right)^2=0\Leftrightarrow x=2\)

18 tháng 6 2017

b) \(\frac{x-3}{x-2}+\frac{x+2}{x-4}=-1\)

\(\Rightarrow\frac{\left(x-3\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}+\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}=-1\)

\(\Rightarrow\frac{\left(x-3\right)\left(x-4\right)+x^2-4}{\left(x-2\right)\left(x-4\right)}=-1\)

\(\Rightarrow\frac{x^2-7x+12+x^2-4}{\left(x-2\right)\left(x-4\right)}=-1\)

\(\Rightarrow\frac{2x^2-7x+8}{\left(x-2\right)\left(x-4\right)}=-1\)

\(\Rightarrow\frac{2x^2-7x+8}{\left(x-2\right)\left(x-4\right)}=-1\)

.................

18 tháng 6 2017

a) \(\frac{2}{x-1}+\frac{2x+3}{x^2+x+1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)

\(\Rightarrow\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(2x+3\right)\left(x-1\right)}{\left(x+1\right)\left(x^2+x+1\right)}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)

\(\Rightarrow\frac{2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)}{x^3-1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)

\(\Rightarrow\left(x^3-1\right)\left[2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)\right]=\left(x^3-1\right)\left(2x-1\right)\left(2x+1\right)\)

\(\Rightarrow2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)=\left(2x-1\right)\left(2x+1\right)\)

\(\Rightarrow2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)-\left(2x-1\right)\left(2x+1\right)=0\)

\(\Rightarrow2x^2+2x+2+2x^2-2x+3x-3-\left(4x^2-1\right)=0\)

\(\Rightarrow2x^2+2x+2+2x^2-2x+3x-3-4x^2+1=0\)

\(\Rightarrow3x=0\)

\(\Rightarrow luon-dung-voi-moi-x\)

28 tháng 2 2018

a) \(\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}\)

Đặt \(x^2-2x+3=t\left(t\ge2\right)\), khi đó phương trình trở thành:

\(\frac{1}{t-1}+\frac{2}{t}=\frac{6}{t+1}\)

\(\Leftrightarrow\frac{t\left(t+1\right)+t^2-1}{\left(t-1\right)t\left(t+1\right)}=\frac{6t\left(t-1\right)}{\left(t-1\right)t\left(t+1\right)}\)

\(\Leftrightarrow t\left(t+1\right)+t^2-1=6t\left(t-1\right)\)

\(\Leftrightarrow2t^2+t-1=6t^2-6t\)

\(\Leftrightarrow-4t^2+7t-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=\frac{7+\sqrt{33}}{8}\\t=\frac{7-\sqrt{33}}{8}\end{cases}}\left(ktmđk\right)\)

Vậy phương trình vô nghiệm.

14 tháng 2 2020

\(ĐKXĐ:x\ne\pm1\)

\(pt\Leftrightarrow\frac{\left(x+1\right)\left(x^2+x+1\right)-3x^2\left(x^2+x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)}\)\(=\frac{2x\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)}\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)-3x^2\left(x^2+x+1\right)\)\(=2x\left(x+1\right)\left(x-1\right)\)

\(\Leftrightarrow\left(x+1-3x^2\right)\left(x^2+x+1\right)\)\(=2x\left(x^2-1\right)\)

\(\Leftrightarrow-3x^4-2x^3-x^2+2x+1\)\(=2x^3-2x\)

\(\Leftrightarrow-3x^4-4x^3-x^2+4x+1=0\)

6 tháng 4 2020

8,

b, (-x2+12x+4)/(x2+3x-4) = 12/(x+4) + 12/(3x-3)

(=) (-x2+12x+4)/(x-1)(x+4) -12(x-1)/(x-1)(x+4) - 4(x+4)/(x-1)(x+4) = 0

(=) -x2 +12x +4 -12x +12 -4x -16 = 0

(=) -x2 -4x = 0

(=) -x(x+4) = 0

(=) -x = 0 hoặc x +4 = 0

(=) x=0 hoặc x=-4

Vậy S={0;4}

Chúc bạn học tốt.

26 tháng 4 2020

x - 3 / x -2   -  x - 2 /x -4  =16/5

x - 3 / x - 2   -  x - 2 /x -4   - 16/5  = 0

-16^2 +81x -88/ 5(x-2)(x-4) = 0

-16^2 +81x -81 =0

16^2 -81x +88 =0

x = -(-81) ± √(-81)^2 -4 *16 *88 /2*16

x = 81±√ 929/32

x1 =81+√929/32

x-2 =81-√929/32

11 tháng 2 2020
https://i.imgur.com/uyRfZGK.jpg
14 tháng 4 2020

1, Các bước giải phương trình chứa ẩn ở mẫu:

Bước 1: Tìm ĐKXĐ của phương trình

Bước 2: Quy đồng và khử mẫu phương trình

Bước 3: Giải phương trình đã khử mẫu

Bước 4: Đối chiếu nghiệm với ĐKXĐ

2, Bạn kiểm tra lại đề

14 tháng 4 2020

Câu 2 đề đúng mà? Giải PT chứa ẩn ở mẫu đó.

NV
11 tháng 4 2019

\(x\ne2;4\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)+\left(x-2\right)\left(x-2\right)=-\left(x-2\right)\left(x-4\right)\)

\(\Leftrightarrow x^2-7x+12+x^2-4x+4+x^2-6x+8=0\)

\(\Leftrightarrow3x^2-17x+24=0\)\(\Rightarrow\left[{}\begin{matrix}x=3\\x=\frac{8}{3}\end{matrix}\right.\)