Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cộng vế hai biểu thức ta đc \(7x=21\)=> x =3
thay vào ta tìm đc y=5
_Kudo_
\(a,\)\(\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\)\(\Rightarrow3x+y+2x-y=3+7\)\(\Rightarrow5x=10\Rightarrow x=2\)
Mà \(3x+y=3\Rightarrow3.2+y=3\Rightarrow y=3-6=-3\)
Vậy \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)
\(b,\hept{\begin{cases}2x+5y=8\\2x-3y=0\end{cases}}\)\(\Rightarrow2x+5y-\left(2x-3y\right)=8-0\)
\(\Rightarrow2x+5y-2x+3y=8\)\(\Rightarrow8y=8\Rightarrow y=1\)
Mà \(2x+5y=8\Rightarrow2x+5=8\Rightarrow2x=\frac{8-5}{2}=\frac{3}{2}\)
Vậy \(\hept{\begin{cases}x=\frac{3}{2}\\y=1\end{cases}}\)
\(c,\hept{\begin{cases}4x+3y=6\\2x+y=4\end{cases}\Rightarrow\hept{\begin{cases}4x+3y=6\\4x+2y=8\end{cases}}}\)
\(\Rightarrow4x+3y-\left(4x+2y\right)=6-8\)
\(\Rightarrow4x+3y-4x-2y=-2\)
\(\Rightarrow y=-2\)
Mà \(4x+3y=6\Rightarrow4x-6=6\Rightarrow4x=12\Leftrightarrow x=3\)
Vậy \(\hept{\begin{cases}x=3\\y=-2\end{cases}}\)
Làm tương tự nha cậu
a) \(\hept{\begin{cases}x+3y=4\left(1\right)\\2x+5y=7\left(2\right)\end{cases}}\)
Nhân cả hai vế ở phương trình (1) với 2 ta được \(2x+6y=8\)(3)
Lấy (3) - (2) ta được \(y=1\)
Từ đó suy ra x = 4 - 3 . 1 = 4 - 3 = 1
Vậy x = y = 1
Giải:
Lấy \(2x\left(1\right)-\left(2\right)\Rightarrow x^2+2xy+y^2-4y-4x+4=0\)
\(\Leftrightarrow\left(x+y\right)^2-4\left(x+y\right)+4=0\Leftrightarrow x+y=2\)
Giải ra được hệ phương trình có nghiệm duy nhất là \(\left(1;1\right)\)
Câu hỏi của Pham Hoàng Lâm - Toán lớp 9 - Học toán với OnlineMath
\(\left\{{}\begin{matrix}3x-2y=11\\4x-5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15x-10y=55\\8x-10y=6\end{matrix}\right.\Leftrightarrow7x=49\Leftrightarrow x=7\)
Thay x = 7 vào 3x - 2y = 11 ta được:
\(3\cdot7-2y=11\Leftrightarrow y=5\)
Vậy (x;y) = (7;5)
\(\left\{{}\begin{matrix}3x-2y=11\\4x-5y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12x-8y=44\\12x-15y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7y=35\\12x-15y=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=5\\12x-15.5=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)