Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,\) Ta có:
\(\dfrac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}\\ =\dfrac{1}{\sqrt{n}.\sqrt{n-1}\left(\sqrt{n}+\sqrt{n-1}\right)}\\ =\dfrac{\sqrt{n}}{\sqrt{n}.\sqrt{n-1}}-\dfrac{\sqrt{n-1}}{\sqrt{n}.\sqrt{n-1}}\\ =\dfrac{1}{\sqrt{n-1}}-\dfrac{1}{\sqrt{n}}\)
Thay:
\(n=2\) \(\Leftrightarrow\dfrac{1}{2\sqrt{1}+1\sqrt{2}}=\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}\)
\(n=3\Leftrightarrow\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\)
\(...\)
\(n=2007\Leftrightarrow\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}=\dfrac{1}{\sqrt{2006}}-\dfrac{1}{\sqrt{2007}}\\ \)
ĐKXĐ: ...
\(\Leftrightarrow2\sqrt{x-5}+2\sqrt{y-2005}+2\sqrt{z+2007}=x+y+z\)
\(\Leftrightarrow x-5-2\sqrt{x-5}+1+y-2005-2\sqrt{y-2005}+1+z+2007-2\sqrt{z-2007}+1=0\)
\(\Leftrightarrow\left(\sqrt{x-5}-1\right)^2+\left(\sqrt{y-2005}-1\right)^2+\left(\sqrt{z+2007}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-5}-1=0\\\sqrt{y-2005}-1=0\\\sqrt{z+2007}-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=2006\\z=-2006\end{matrix}\right.\)
Bạn xem lại đề câu b và c nhé !
a) \(\sqrt{x^2+2x+4}\ge x-2\) \(\left(ĐK:x\ge2\right)\)
\(\Leftrightarrow x^2+2x+4>x^2-4x+4\)
\(\Leftrightarrow6x>0\Leftrightarrow x>0\) kết hợp với ĐKXĐ
\(\Rightarrow x\ge2\) thỏa mãn đề.
d) \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)
\(ĐKXĐ:x\ge2,y\ge3,z\ge5\)
Pt tương đương :
\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\) ( Thỏa mãn ĐKXĐ )
e) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\) (1)
\(ĐKXĐ:x\ge0,y\ge1,z\ge2\)
Phương trình (1) tương đương :
\(x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)( Thỏa mãn ĐKXĐ )
e/ \(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)
\(\Leftrightarrow4+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\)
\(\Leftrightarrow2\sqrt{-x^2+8x-12}=x^2-8x+20\)
Đặt \(\sqrt{-x^2+8x-12}=a\left(a\ge0\right)\)thì pt thành
\(2a=-a^2+8\)
\(\Leftrightarrow a^2+2a-8=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-4\left(l\right)\\a=2\end{cases}}\)
\(\Leftrightarrow\sqrt{-x^2+8x-12}=2\)
\(\Leftrightarrow-x^2+8x-12=4\)
\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)
a/ \(4x^2+3x+3-4x\sqrt{x+3}-2\sqrt{2x-1}=0\)
\(\Leftrightarrow\left(4x^2-4x\sqrt{x+3}+x+3\right)+\left(2x-1-2\sqrt{2x-1}+1\right)=0\)
\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)^2+\left(1-\sqrt{2x-1}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x=\sqrt{x+3}\\1=\sqrt{2x-1}\end{cases}\Leftrightarrow}x=1\)
c/ ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x-3}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}\right)-\left(\sqrt{\left(x-1\right)\left(x+3\right)}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}-\sqrt{x+3}=0\\\sqrt{x-1}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2< 3\left(ktm\right)\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
a/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow2\sqrt{\left(x-2\right)\left(x+2\right)}-6\sqrt{x-2}+\sqrt{x+2}-3=0\)
\(\Leftrightarrow2\sqrt{x-2}\left(\sqrt{x+2}-3\right)+\sqrt{x+2}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x-2}+1\right)\left(\sqrt{x+2}-3\right)=0\)
\(\Leftrightarrow\sqrt{x+2}-3=0\Rightarrow x=11\)
b/ ĐKXĐ: ....
Đặt \(\left\{{}\begin{matrix}\sqrt{x-2016}=a>0\\\sqrt{y-2017}=b>0\\\sqrt{z-2018}=a>0\end{matrix}\right.\)
\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}-\frac{a-1}{a^2}+\frac{1}{4}-\frac{b-1}{b^2}+\frac{1}{4}-\frac{c-1}{c^2}=0\)
\(\Leftrightarrow\frac{\left(a-2\right)^2}{a^2}+\frac{\left(b-2\right)^2}{b^2}+\frac{\left(c-2\right)^2}{c^2}=0\)
\(\Leftrightarrow a=b=c=2\Rightarrow\left\{{}\begin{matrix}x=2020\\y=2021\\z=2022\end{matrix}\right.\)
a/ ĐK: \(x\ge0\)
\(\Leftrightarrow\sqrt{3+x}=x^2-3\)
Đặt \(\sqrt{3+x}=a>0\Rightarrow3=a^2-x\) pt trở thành:
\(a=x^2-\left(a^2-x\right)\)
\(\Leftrightarrow x^2-a^2+x-a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+a+1\right)=0\)
\(\Leftrightarrow x=a\) (do \(x\ge0;a>0\))
\(\Leftrightarrow\sqrt{3+x}=x\Leftrightarrow x^2-x-3=0\)
d/ ĐKXĐ: ...
\(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
\(\Leftrightarrow\sqrt{2x-3}-1+x^2+1-\sqrt{6x^2+1}\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^4+2x^2+1-6x^2-1}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)\left(x-2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}\right)=0\)
\(\Leftrightarrow x=2\) (phần trong ngoặc luôn dương với mọi \(x\ge\frac{3}{2}\))