K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2018

\(\left(\frac{3}{1.3}+\frac{3}{3.5}+.......+\frac{3}{97.99}\right).\left(2x+1\right)=x+\frac{1}{33}\)

\(\Rightarrow[\frac{3}{2}.(\frac{2}{1.3}+\frac{2}{3.5}+.......+\frac{2}{97.99})].\left(2x+1\right)=x+\frac{1}{33}\)

\(\Rightarrow[\frac{3}{2}.(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{97}-\frac{1}{99})].\left(2x+1\right)=x+\frac{1}{33}\)

\(\Rightarrow[\frac{3}{2}.(1-\frac{1}{99})].\left(2x+1\right)=x+\frac{1}{33}\)

\(\Rightarrow\left(\frac{3}{2}.\frac{98}{99}\right).\left(2x+1\right)=x+\frac{1}{33}\)

\(\Rightarrow\frac{49}{33}.\left(2x+1\right)=x+\frac{1}{33}\)

\(\Rightarrow\frac{49}{33}.2x+\frac{49}{33}=x+\frac{1}{33}\)

\(\Rightarrow\frac{98}{33}.x+\frac{49}{33}=x+\frac{1}{33}\)

\(\Rightarrow\frac{98}{33}.x-x=\frac{1}{33}-\frac{49}{33}\)

\(\Rightarrow\frac{65}{33}.x=\frac{-16}{11}\)

\(\Rightarrow x=\frac{-16}{11}:\frac{65}{33}\)

\(\Rightarrow x=\frac{-48}{65}\)

Vậy \(x=\frac{-48}{65}\)

a) Ta có: \(\dfrac{x-3}{5}=6-\dfrac{1-2x}{3}\)

\(\Leftrightarrow\dfrac{3\left(x-3\right)}{15}=\dfrac{90}{15}-\dfrac{5\left(1-2x\right)}{15}\)

\(\Leftrightarrow3x-9=90-5+10x\)

\(\Leftrightarrow3x-9=10x+85\)

\(\Leftrightarrow3x-10x=85+9\)

\(\Leftrightarrow-7x=94\)

hay \(x=-\dfrac{94}{7}\)

Vậy: \(S=\left\{-\dfrac{94}{7}\right\}\)

b) Ta có: \(\dfrac{3x-2}{6}-5=\dfrac{3-2\left(x+7\right)}{4}\)

\(\Leftrightarrow\dfrac{2\left(3x-2\right)}{12}-\dfrac{60}{12}=\dfrac{3\left(3-2x-14\right)}{12}\)

\(\Leftrightarrow6x-4-60=9-6x-42\)

\(\Leftrightarrow6x-64=-6x-33\)

\(\Leftrightarrow6x+6x=-33+64\)

\(\Leftrightarrow12x=31\)

hay \(x=\dfrac{31}{12}\)

Vậy: \(S=\left\{\dfrac{31}{12}\right\}\)

c) Ta có: \(3\left(x-1\right)+3=5x\)

\(\Leftrightarrow3x-3+3=5x\)

\(\Leftrightarrow3x-5x=0\)

\(\Leftrightarrow-2x=0\)

hay x=0

Vậy: S={0}

d) Ta có: \(\dfrac{x+1}{100}+\dfrac{x+2}{99}=\dfrac{x+3}{98}+\dfrac{x+4}{97}\)

\(\Leftrightarrow\dfrac{x+1}{100}+1+\dfrac{x+2}{99}+1=\dfrac{x+3}{98}+1+\dfrac{x+4}{97}+1\)

\(\Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}=\dfrac{x+101}{98}+\dfrac{x+101}{97}\)

\(\Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}-\dfrac{x+101}{98}-\dfrac{x+101}{97}=0\)

\(\Leftrightarrow\left(x+101\right)\left(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\right)=0\)

mà \(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\ne0\)

nên x+101=0

hay x=-101

Vậy: S={-101}

23 tháng 1 2021

a) \(\dfrac{x-3}{5}=6-\dfrac{1-2x}{3}\\ \Leftrightarrow\dfrac{3\left(x-3\right)}{15}=\dfrac{90-5\left(1-2x\right)}{15}\\ \Leftrightarrow3x-9=90-5+10x\\ \Leftrightarrow3x-10x=90-5+9\\ \Leftrightarrow-7x=94\\ \Leftrightarrow x=\dfrac{-94}{7}\)

Vậy \(x=\dfrac{-94}{7}\) là nghiệm của pt

b) \(\dfrac{3x-2}{6}-5=\dfrac{3-2\left(x+7\right)}{4}\\ \Leftrightarrow\dfrac{2\left(3x-2\right)-60}{12}=\dfrac{9-6\left(x+7\right)}{12}\\ \Leftrightarrow6x-4-60=9-6x-42\\ \Leftrightarrow6x+6x=9-42+4+60\\ \Leftrightarrow12x=31\\ \Leftrightarrow x=\dfrac{31}{12}\)

Vậy \(x=\dfrac{31}{12}\) là nghiệm của pt

c) \(3\left(x-1\right)+3=5x\\ \Leftrightarrow3x+3+3=5x\\ \Leftrightarrow5x-3x=3+3\\ \Leftrightarrow2x=6\\ \Leftrightarrow x=3\)

Vậy x = 3 là nghiệm của pt

d) \(\dfrac{x+1}{100}+\dfrac{x+2}{99}=\dfrac{x+3}{98}+\dfrac{x+4}{97}\\ \Leftrightarrow\left(\dfrac{x+1}{100}+1\right)+\left(\dfrac{x+2}{99}+1\right)=\left(\dfrac{x+3}{98}+1\right)+\left(\dfrac{x+4}{97}+1\right)\\ \Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}-\dfrac{x+101}{98}-\dfrac{x+101}{97}=0\\ \Leftrightarrow\left(x+101\right)\left(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\right)=0\\ \Leftrightarrow x+101=0\\ \Leftrightarrow x=-101\)

Vậy x = -101 là nghiệm của pt

e) \(\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}=-4\\ \Leftrightarrow\left(\dfrac{59-x}{41}+1\right)+\left(\dfrac{57-x}{43}+1\right)+\left(\dfrac{53-x}{45}+1\right)+\left(\dfrac{53-x}{47}+1\right)=0\\ \Leftrightarrow\dfrac{100-x}{41}+\dfrac{100-x}{43}+\dfrac{100-x}{45}+\dfrac{100-x}{47}=0\\ \Leftrightarrow\left(100-x\right)\left(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}\right)=0\\ \Leftrightarrow100-x=0\\ \Leftrightarrow x=100\)

Vậy x = 100 là nghiệm của pt

f) \(\dfrac{x-90}{10}+\dfrac{x-76}{12}+\dfrac{x-58}{14}+\dfrac{x-36}{16}+\dfrac{x-15}{17}=15\\ \Leftrightarrow\left(\dfrac{x-90}{10}-1\right)+\left(\dfrac{x-76}{12}-2\right)+\left(\dfrac{x-58}{14}-3\right)+\left(\dfrac{x-36}{16}-4\right)+\left(\dfrac{x-15}{17}-5\right)=0\\ \Leftrightarrow\dfrac{x-100}{10}+\dfrac{x-100}{12}+\dfrac{x-100}{14}+\dfrac{x-100}{16}+\dfrac{x-100}{17}=0\\ \Leftrightarrow\left(x-100\right)\left(\dfrac{1}{10}+\dfrac{1}{12}+\dfrac{1}{14}+\dfrac{1}{16}+\dfrac{1}{17}\right)=0\\ \Leftrightarrow x-100=0\\ \Leftrightarrow x=100\)

Vậy x = 100 là nghiệm của pt

AH
Akai Haruma
Giáo viên
30 tháng 8 2021

1.

$2(-2x+1)\leq -x+3$

$\Leftrightarrow -4x+2\leq -x+3$

$\Leftrightarrow -1\leq 3x$

$\Leftrightarrow x\geq \frac{-1}{3}$ 

2.

$2(x+1)\leq  -x+3$

$\Leftrightarrow 2x+2\leq -x+3$

$\Leftrightarrow 3x\leq 1$

$\Leftrightarrow x\leq \frac{1}{3}$

 

AH
Akai Haruma
Giáo viên
30 tháng 8 2021

3.

$5-3(x-1)>2$

$\Leftrightarrow 5-(3x-3)>2$

$\Leftrightarrow 8-3x>2$

$\Leftrightarrow 8-3x-2>0$

$\Leftrightarrow 6-3x>0$

$\Leftrightarrow 6>3x$

$\Leftrightarrow x< 2$

4.

$x^2-12x+3-(x-3)^2>0$

$\Leftrightarrow x^2-12x+3-(x^2-6x+9)>0$

$\Leftrightarrow -6x-6>0$

$\Leftrightarrow -6>6x$

$\Leftrightarrow x< -1$

 

22 tháng 1 2022

a) \(\dfrac{x+1}{2004}+\dfrac{x+2}{2003}=\dfrac{x+3}{2002}+\dfrac{x+4}{2001}\) 

⇔ \(\dfrac{x+1}{2004}+1+\dfrac{x+2}{2003}+1=\dfrac{x+3}{2002}+1+\dfrac{x+4}{2001}+1\)

⇔ \(\dfrac{x+2005}{2004}+\dfrac{x+2005}{2003}=\dfrac{x+2005}{2002}+\dfrac{x+2005}{2001}\)

⇔ \(\left(x+2005\right)\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)\)=0

\(\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)\)<0 nên phương trinh đã cho tương đương:

x+2005=0 ⇔x=-2005

b) \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\) 

⇔ \(\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)

⇔ \(\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)

⇔ \(\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)

Vì \(\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)>0\) nên phương trình đã cho tương đương:

300-x=0 ⇔ x=300

26 tháng 1 2018

c, Trừ hai vế cho 6 

Vế trái thì lấy từng số hạng trừ 1 là được

8 tháng 2 2018

thế tức là phải như nào hả bạn

19 tháng 3 2022

b, \(\left(2x-3\right)\left(x+1-x-5\right)=0\Leftrightarrow x=\dfrac{3}{2}\)

c, \(x^2-4x+1=2x-22\Leftrightarrow x^2-6x+23=0\Leftrightarrow\left(x-3\right)^2+14=0\left(voli\right)\)

pt vô nghiệm 

d, \(\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1=\dfrac{205-x}{95}+1\)

\(\Leftrightarrow\dfrac{300-x}{99}+\dfrac{300-x}{97}=\dfrac{300-x}{95}\)

\(\Leftrightarrow\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}-\dfrac{1}{95}\ne0\right)=0\Leftrightarrow x=300\)

30 tháng 12 2022

\(\Leftrightarrow\left(\dfrac{x-1}{99}-1\right)+\left(\dfrac{x-99}{1}-1\right)+\left(\dfrac{x-3}{97}-1\right)+\left(\dfrac{x-97}{3}-1\right)+\left(\dfrac{x-5}{95}-1\right)+\left(\dfrac{x-95}{5}-1\right)=0\)

=>x-100=0

=>x=100

8 tháng 7 2018

1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)

ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)

<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)

<=> \(\frac{3x+10}{x^2+2x-3}=0\)

<=> \(3x+10=0\)

<=> \(x=-\frac{10}{3}\)