Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2018.2020}\)
\(\frac{1}{2}\)A= \(\frac{1}{2}.\left(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2018.2020}\right)\)
\(\frac{1}{2}A\)= \(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2018.2020}\)
\(\frac{1}{2}A\)= \(\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+...+\frac{2020-2018}{2018.2020}\)
\(\frac{1}{2}A\)= \(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2018}-\frac{1}{2020}\)
\(\frac{1}{2}A\)= \(\frac{1}{2}-\frac{1}{2020}\)
\(\frac{1}{2}A=\frac{1009}{2020}\)
\(A=\frac{1009}{2020}:\frac{1}{2}\)
\(A=\frac{1009}{1010}\)
a) Ta có
A= 4/2*4+4/4*6+....+4/2018*2020
=> A= 2*(2/2*4+2/4*6+...+2*(2018*2020)
=> A= 2*(1/2-1/4+1/4-1/6+...+1/2018-1/2020)
=> A= 2*(1/2-1/2020)
=> A= 2* 1009/2020
=> A= 1009/1010
b) B= 1/18+1/54+1/108+...+1/990
=> B= 3/3*(1/18+1/54+1/108+..+1/990)
=> B= 1/3*( 3/3*6+3/6*9+...+3/30*33)
=> B= 1/3*(1/3-1/6+1/6-1/9+1/9-1/12+...+1/30-1/33)
=> B= 1/3*( 1/3-1/33)
=> B=1/3*10/33
=> B=10/99
1/6*3+1/6*9+1/9*12+........+1/30*33
=(1/3-1/6)+(1/6-1/9)+(1/9-1/12)+........+(1/30-1/33)
=1/3-1/6+1/6-1/9+1/9-1/12+........+1/30-1/33
=1/3-1/33
=10/33
nho k cho mink nha
CHUC BAN HOC GIOI !
Gợi ý: 18 = 3.6
54 = 6.9
108 = 9.12
.............
990 = 30.33
Gấp 3 lần R rồi dùng sai phân hữu hạn.
Tự làm tiếp nhé!!!
Bạn viết thêm số thứ 3 ở đầu dãy thì mới biết quy luật của dãy để tính chứ. Viết 2 số thế kia ai tính được :D
Bạn chỉ viết 2 số ở đầu dãy thì ko thể biết được quy luật của dãy. Bạn cần cho thêm 1 số nữa mới giải được chi tiết nhé!
\(A=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+....+\frac{1}{256}-\frac{1}{512}\)
\(=\frac{1}{2}-\frac{1}{512}\)
\(=\frac{255}{512}\)
Vậy \(A=\frac{255}{512}\)
A=14 +18 +116 +132 +164 +1128 +1256 +1512
=12 −14 +14 −18 +....+1256 −1512
=12 −1512
=255512
Vậy A=255512
Phạm Long Khánh
\(\frac{x-12}{3}=\frac{x+1}{4}\)
=>(x-12).4=(x+1)*3
4x-48=3x+3
4x-3x=48+3
x=51
(x-12)/3=(x+1)/4
(x-12)*4=(x+1)*3
x*4-12*4=x*3+1*3
4x-48=3x+3
4x-3x=3+48
x=51
\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(=\frac{1}{3\cdot6}+\frac{1}{6\cdot9}+\frac{1}{9\cdot12}+...+\frac{1}{30\cdot33}\)
\(=\frac{1}{3}\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\frac{3}{9\cdot12}+...+\frac{3}{30\cdot33}\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(=\frac{1}{3}\cdot\frac{10}{33}=\frac{10}{99}\)
\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(=\frac{1}{3}.\frac{10}{33}\)
\(=\frac{10}{99}\)