K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

\(\left\{{}\begin{matrix}x^3-y^3=2y+8x\\x^2-3y^2=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x^3-3y^3=6\left(y+4x\right)\\x^2-3y^2=6\end{matrix}\right.\)

\(\Rightarrow3x^3-3y^3=\left(x^2-3y^2\right)\left(y+4x\right)\)

\(\Leftrightarrow3x^3-3y^3=x^2y+4x^3-3y^3-12y^2x\)

\(\Leftrightarrow x^3+x^2y-12xy^2=0\)

\(\Leftrightarrow x\left(x^2+xy-12y^2\right)=0\)

\(\Leftrightarrow x\left(x-3y\right)\left(x+4y\right)=0\)

Đến đây thì dễ rồi

18 tháng 1 2021

b) ĐKXĐ: \(x,y\neq 0\).

Ta có: \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=\dfrac{1}{x}-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=\dfrac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-y=0\\xy=-1\end{matrix}\right.\\2y=x^3+1\end{matrix}\right.\).

Với x - y = 0 suy ra x = y. Do đó \(2x=x^3+1\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1=y\left(TMĐK\right)\\x=\pm\dfrac{\sqrt{5}-1}{2}=y\left(TMĐK\right)\end{matrix}\right.\).

Với xy = -1 suy ra \(y=-\dfrac{1}{x}\). Do đó \(x^3+\dfrac{2}{x}+1=0\Rightarrow x^4+x+2=0\). Phương trình vô nghiệm do \(x^4+x+2=\left(x^2-\dfrac{1}{2}\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{2}>0\).

Vậy...

19 tháng 1 2021

Em cảm ơn ạ !

13 tháng 3 2021

Bạn tham khảo cách giải:

13 tháng 3 2021

Bạn tham khảo cách giải: 

19 tháng 7 2020

giup tui mấy bài toán tui mới đăng nhaa :33

NV
19 tháng 7 2020

3.

ĐKXĐ: ...

Trừ vế cho vế ta được:

\(2x-2y=y-x+\sqrt{y-2}-\sqrt{x-2}\)

\(\Leftrightarrow3\left(x-y\right)+\sqrt{x-2}-\sqrt{y-2}=0\)

\(\Leftrightarrow3\left(x-y\right)+\frac{x-y}{\sqrt{x-2}+\sqrt{y-2}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(3+\frac{1}{\sqrt{x-2}+\sqrt{y-2}}\right)=0\)

\(\Leftrightarrow x=y\) (ngoặc to luôn dương)

Thay vào pt đầu:

\(2x-2=x+\sqrt{x-2}\)

\(\Leftrightarrow x-2=\sqrt{x-2}\Rightarrow\left[{}\begin{matrix}x-2=0\\x-2=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=y=2\\x=y=3\end{matrix}\right.\)

11 tháng 8 2017

1/ \(\left\{{}\begin{matrix}x^3+y^3=1\left(1\right)\\x^2y+2xy^2+y^3=2\left(2\right)\end{matrix}\right.\)

Lấy (1). 2 - (2) ta được:

\(2x^3+y^3-x^2y-2xy^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(2x-y\right)=0\)

Đến đây dễ rồi nhé ^^

2/ Ta viết lại pt thứ 2 của hệ:

\(y^2-4\left(x+2\right)y+16+16x-5x^2=0\)

\(\Leftrightarrow y^2-4\left(x+2\right)y+4\left(x+2\right)^2-9x^2=0\)

\(\Leftrightarrow\left[y-2\left(x+2\right)\right]^2-\left(3x\right)^2=0\)

\(\Leftrightarrow\left(x+y-4\right)\left(y-5x-4\right)=0\)

Bạn làm tiếp nhé!

11 tháng 8 2017

3/ Ta viết lại pt thứ nhất của hệ

\(x^2-x\left(2y-3\right)+y^2-3y-4=0\)

\(\Leftrightarrow x^2-x\left(2y-3\right)+\dfrac{4y^2-12y+9}{4}-\dfrac{25}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{2y+3}{2}\right)^2-\left(\dfrac{5}{2}\right)^2=0\)

\(\Leftrightarrow\left(x-y-4\right)\left(x-y+1\right)=0\)

Bạn làm tiếp được chứ?

4/ Viết lại pt thứ 2 của hệ

\(\left(y+\sqrt{x}\right)^2-\left(y\sqrt{x}\right)^2=0\)

\(\Leftrightarrow\left(y-\sqrt{x}-y\sqrt{x}\right)\left(y-\sqrt{x}+y\sqrt{x}\right)=0\)

NV
31 tháng 7 2021

a. Đề sai, hệ pt này không giải được

b.

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2-2=-x^2\\x^2y^2+xy+1=3x^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x^2y^2-6=-3x^2\\x^2y^2+xy+1=3x^2\end{matrix}\right.\)

Cộng vế:

\(4x^2y^2+xy-5=0\Rightarrow\left[{}\begin{matrix}xy=1\\xy=-\dfrac{5}{4}\end{matrix}\right.\)

Thế vào pt \(x^2y^2+xy+1=3x^2\) sẽ tìm được x \(\Rightarrow y\)

NV
26 tháng 9 2020

\(\Leftrightarrow\left\{{}\begin{matrix}2x^3+2y^3=2\\x^2y+2xy^2+y^3=2\end{matrix}\right.\)

\(\Rightarrow2x^3-x^2y-2xy^2+y^3=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x^2+xy-y^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(2x-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=x\\y=-x\\y=2x\end{matrix}\right.\) thay vào pt đầu:

\(\Rightarrow\left[{}\begin{matrix}x^3+x^3=1\\x^3+\left(-x\right)^3=1\\x^3+\left(2x\right)^3=1\end{matrix}\right.\) \(\Leftrightarrow...\)