K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

hình như là đề vio lớp 9 vòng 17 năm ngoái

Câu 3: 

Gọi thời gian hai vòi 1 và 2 chảy một mình đầy bể lần lượt là x,y

Trong 1 giờ, vòi 1 chảy được: 1/x(bể)

Trong 1 giờ, vòi 2 chảy được: 1/y(bể)

Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{4}{y}=\dfrac{2}{3}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{4}{y}=\dfrac{2}{3}\\\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{15}\\\dfrac{1}{x}=\dfrac{1}{5}-\dfrac{1}{15}=\dfrac{2}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{15}{2}\\y=15\end{matrix}\right.\)

11 tháng 11 2021

ĐKXĐ: \(\left\{{}\begin{matrix}-3x\ge0\\x^2-1\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le0\\x^2\ne1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le0\\x\ne\pm1\end{matrix}\right.\)

10 tháng 11 2021

\(Q=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ Q=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}=\dfrac{\left(\sqrt{x}+1\right)^2}{x}\)

10 tháng 11 2021

Sao nó ra căn x vậy ạ cậu giải chi tiết xíu đc ko ạ

4 tháng 6 2021

gọi x là vận tốc của ô tô

y là vận tốc của xe máy (km/h) (x>y>0)

sau 4h 2 xe gặp nhau nên tổng quãng đường AB bằng:

AB= 4.x+4.y = 4.(x+y) (km)

nên thgian ô tô và xe máy đi hết AB lần lượt là:

\(\dfrac{4\left(x+y\right)}{y}\)(h); \(\dfrac{4\left(x+y\right)}{x}\) (h)

vì ô tô đến sớm hơn xe máy 6h nên ta có pt:

\(\dfrac{4\left(x+y\right)}{y}\)-\(\dfrac{4\left(x+y\right)}{x}\)=6

\(\dfrac{4x+4y}{y}\)-\(\dfrac{4x+4y}{x}\)=6

⇔4.\(\dfrac{x}{y}\) +4-4-\(\dfrac{4y}{x}\)=6

\(\dfrac{x}{y}\)-\(\dfrac{y}{x}\)=\(\dfrac{6}{4}\)=\(\dfrac{3}{2}\)

đặt: t=\(\dfrac{x}{y}\) (t>0)

⇒t-\(\dfrac{1}{t}\)=\(\dfrac{3}{2}\)

⇔t2-\(\dfrac{3}{2}\)t-1=0

⇔(t -2)(t +\(\dfrac{1}{2}\))=0

⇔t=2

\(\dfrac{x}{y}\)=2 ⇒x=2y

⇒AB=4.(x+y)=6x=12y

nên thgian ô tô và xe máy đi hết AB lần lượt là:

\(\dfrac{6x}{x}=6\) (h)

\(\dfrac{12y}{y}=12\) (h)

5 tháng 6 2021

Gọi thời gian xe máy đi hết quãng đường AB là x (h) (x>4)

thời gian xe máy đi hết quãng đường AB là y (h) (y>4)

Trong 1 giờ xe máy đi được \(\dfrac{1}{x}\) (quãng đường)

Trong 1 giờ ô tô đi được \(\dfrac{1}{y}\) (quãng đường)

Trong 1 giờ hai xe đi được \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\left(1\right)\)

Mà thời gian ô tô về đến A sớm hơn xe máy về đến B là 6 giờ nên: \(x-y=6\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\x-y=6\end{matrix}\right.\)             \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{x-6}=\dfrac{1}{4}\\y=x-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-14x+24=0\\y=2-6\end{matrix}\right.\)(ĐK:\(x\ne6\))             \(\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=6\end{matrix}\right.\)(TM)

Vậy thời gian xe máy đi hết quãng đường AB là 12 giờ

thời gian ô tô đi hết quãng đường AB là 6giờ

-Chúc bạn học tốt-

 

 

 

 

 

 

Câu 2: 

Ta có: \(x^3+3x^2-4x-12=0\)

\(\Leftrightarrow x^2\left(x+3\right)-4\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)

hay \(x\in\left\{-3;2;-2\right\}\)

b: x1^2+m(x2)=13

=>x1^2+x2(x1+x2)=13

=>(x1+x2)^2-x1x2=13

=>m^2-m+1-13=0

=>m^2-m-12=0

=>m=4; m=-3

1 tháng 9 2021

10. Câu này chứng minh BĐT BSC:

\(\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\sqrt{\left(ab+bc\right)^2}=b\left(a+c\right)\)

1 tháng 9 2021

11.

Ta có: \(\dfrac{1}{1+a}+\dfrac{1}{1+b}-\dfrac{2}{1+\sqrt{ab}}\)

\(=\dfrac{\left(1+b\right)\left(1+\sqrt{ab}\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}+\dfrac{\left(1+a\right)\left(1+\sqrt{ab}\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}-\dfrac{2\left(1+a\right)\left(1+b\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\)

\(=\dfrac{1+b+\sqrt{ab}+b\sqrt{ab}}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}+\dfrac{1+a+\sqrt{ab}+a\sqrt{ab}}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}-\dfrac{2+2a+2b+2ab}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\)

\(=\dfrac{-a-b+2\sqrt{ab}+a\sqrt{ab}+b\sqrt{ab}-2ab}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\)

\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{ab}-1\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\forall x,y\ge1\)

Đẳng thức xảy ra khi \(a=b=1\)