Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GTNN (A)=3178+2017 khi x=0 ko co GTLN
GTLN(b)=2017 khi x=-3 va y=5 khong co GTNN
GTNN(c)=2018 khi x=-1 va y=5 khong co GTLN
neu can giai thich thi h
ko thi thoi
em cũng muốn làm phước giúp chị lắm chứ nhưng em mới ở lớp 6 thui
Từ bài toán, ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\) và \(a+b+c=24\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{24}{12}=2\)
Suy ra:
\(a=2\cdot3=6\)
\(b=2\cdot4=8\)
\(c=3\cdot5=15\)
Ta có \(5x=3y\Rightarrow\frac{x}{3}=\frac{y}{5}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{10}{-2}=-5\)
\(\Rightarrow x=3.\left(-5\right)=-15;y=\left(-5\right).5=-25\)
Vậy x = -15 ; y = -25
Gọi số học sinh lần lượt là x, y, z của các khối 6,7,8
Theo đề ra, ta có :
x/10=y/9=z/8 và x-z = 50
=> x/10=y/9=z/8= x-z/10-8= 50/2= 25
=>x= 10.25= 250
=>y=9.25=225
=>z=8.25=200
Vậy số học sinh 3 khối 6,7,8, lần lượt là 250, 225, 200
Bị sai đề đó ! nên mình sửa lại
a: góc yOz=180-60=120 độ
góc zOm=góc yOm=120/2=60 độ
b: góc xOn=góc zOm=60 độ
=>góc xOn=góc xOy
=>Ox là phân giác của góc yOn
Câu 9 cần bs điều kiện $x,y,z\neq 0$
$\frac{x}{3}=\frac{y}{4}\Rightarrow \frac{x}{15}=\frac{y}{20}$
$\frac{y}{5}=\frac{z}{6}\Rightarrow \frac{y}{20}=\frac{z}{24}$
$\Rightarrow \frac{x}{15}=\frac{y}{20}=\frac{z}{24}$ và đặt $=t$ (đk: $t\neq 0$)
$\Rightarrow x=15t; y=20t; z=24t$
Khi đó:
$M=\frac{2.15t+3.20t+4.24t}{3.15t+4.20t+5.24t}=\frac{186t}{245t}=\frac{186}{245}$
Đáp án B.
Câu 10:
Giả sử số $A$ được chia thành 3 phần $a,b,c$ sao cho
$a:b:c=\frac{2}{5}: \frac{3}{4}: \frac{1}{6}$
Đặt $a=\frac{2}{5}t; b=\frac{3}{4}t; c=\frac{1}{6}t$
$A=a+b+c=\frac{2}{5}t+\frac{3}{4}t+\frac{1}{6}t=\frac{79}{60}t$
Có:
$a^2+b^2+c^2=(\frac{2}{5}t)^2+(\frac{3}{4}t)^2+(\frac{1}{6}t)^2=24309$
$t^2=32400$
$t=\pm 180$
$\Rightarrow A=\frac{79}{60}t=\frac{79}{60}\pm 180=\pm 237$
Đáp án D.
\(a,\left\{{}\begin{matrix}AC=AD\\\widehat{ACE}=\widehat{DCE}\left(CE.là.p/g\right)\\CE.chung\end{matrix}\right.\Rightarrow\Delta ACE=\Delta DCE\left(c.g.c\right)\\ \Rightarrow AE=ED\\ b,\Delta ACE=\Delta DCE\Rightarrow\widehat{BAC}=\widehat{CED}=90^0\\ \Rightarrow BC\perp DE\\ \Rightarrow\widehat{BED}+\widehat{B}=90^0\)
Mà \(\widehat{ACB}+\widehat{B}=90^0\left(\Delta ABC\perp A\right)\)
Vậy \(\widehat{BED}=\widehat{ACB}\)
\(c,\) Gọi giao của phân giác \(\widehat{BED}\) và BC là F
\(\Rightarrow\widehat{FED}=\dfrac{1}{2}\widehat{BED}\)
Lại có \(\Delta ACE=\Delta DCE\Rightarrow\widehat{AEC}=\widehat{CED}\)
Mà \(\widehat{AEC}+\widehat{CED}=\widehat{AED}\Rightarrow\widehat{CED}=\dfrac{1}{2}\widehat{AED}\)
Ta có \(\widehat{CEF}=\widehat{CED}+\widehat{FED}=\dfrac{1}{2}\left(\widehat{AED}+\widehat{DEB}\right)\)
Mà \(\widehat{AED}+\widehat{DEB}=180^0\)
Do đó \(\widehat{CEF}=90^0\Rightarrow CE\perp EF\)
Suy ra cái đề
Anh chăm chỉ thế