K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2021

\(a,\left\{{}\begin{matrix}AC=AD\\\widehat{ACE}=\widehat{DCE}\left(CE.là.p/g\right)\\CE.chung\end{matrix}\right.\Rightarrow\Delta ACE=\Delta DCE\left(c.g.c\right)\\ \Rightarrow AE=ED\\ b,\Delta ACE=\Delta DCE\Rightarrow\widehat{BAC}=\widehat{CED}=90^0\\ \Rightarrow BC\perp DE\\ \Rightarrow\widehat{BED}+\widehat{B}=90^0\)

Mà \(\widehat{ACB}+\widehat{B}=90^0\left(\Delta ABC\perp A\right)\)

Vậy \(\widehat{BED}=\widehat{ACB}\)

\(c,\) Gọi giao của phân giác \(\widehat{BED}\) và BC là F

\(\Rightarrow\widehat{FED}=\dfrac{1}{2}\widehat{BED}\)

Lại có \(\Delta ACE=\Delta DCE\Rightarrow\widehat{AEC}=\widehat{CED}\)

Mà \(\widehat{AEC}+\widehat{CED}=\widehat{AED}\Rightarrow\widehat{CED}=\dfrac{1}{2}\widehat{AED}\)

Ta có \(\widehat{CEF}=\widehat{CED}+\widehat{FED}=\dfrac{1}{2}\left(\widehat{AED}+\widehat{DEB}\right)\)

Mà \(\widehat{AED}+\widehat{DEB}=180^0\)

Do đó \(\widehat{CEF}=90^0\Rightarrow CE\perp EF\)

Suy ra cái đề

18 tháng 11 2021

Anh chăm chỉ thế

10 tháng 11 2016

GTNN (A)=3178+2017 khi x=0 ko co GTLN

GTLN(b)=2017 khi x=-3 va y=5 khong co GTNN

GTNN(c)=2018 khi x=-1 va y=5 khong co GTLN

neu can giai thich thi h

ko thi thoi 

10 tháng 11 2016

em cũng muốn làm phước giúp chị lắm chứ nhưng em mới ở lớp 6 thui

28 tháng 1 2023

Từ bài toán, ta có:

\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\) và \(a+b+c=24\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{24}{12}=2\)

Suy ra:

\(a=2\cdot3=6\)

\(b=2\cdot4=8\)

\(c=3\cdot5=15\)

28 tháng 1 2023

Phần a b c = 24 là ''+'' hay ''-'' hả bạn?

1 tháng 8 2021

Ta có \(5x=3y\Rightarrow\frac{x}{3}=\frac{y}{5}\)

Áp dụng dãy tỉ số bằng nhau ta có : 

\(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{10}{-2}=-5\)

\(\Rightarrow x=3.\left(-5\right)=-15;y=\left(-5\right).5=-25\)

Vậy x = -15 ; y = -25

2 tháng 8 2021

Trả lời:

\(5x=3y\Rightarrow\frac{x}{3}=\frac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{10}{-2}=-5\)

\(\Rightarrow\hept{\begin{cases}x=-15\\y=-25\end{cases}}\)

Vậy x = - 15; y = - 25 

25 tháng 10 2018

Gọi số học sinh lần lượt là x, y, z của các khối 6,7,8

Theo đề ra, ta có :

x/10=y/9=z/8 và x-z = 50

=> x/10=y/9=z/8= x-z/10-8= 50/2= 25

=>x= 10.25= 250

=>y=9.25=225

=>z=8.25=200

Vậy số học sinh 3 khối 6,7,8, lần lượt là 250, 225, 200

Bị sai đề đó ! nên mình sửa lại

a: góc yOz=180-60=120 độ

góc zOm=góc yOm=120/2=60 độ

b: góc xOn=góc zOm=60 độ

=>góc xOn=góc xOy

=>Ox là phân giác của góc yOn

AH
Akai Haruma
Giáo viên
15 tháng 10 2021

Câu 9 cần bs điều kiện $x,y,z\neq 0$

$\frac{x}{3}=\frac{y}{4}\Rightarrow \frac{x}{15}=\frac{y}{20}$

$\frac{y}{5}=\frac{z}{6}\Rightarrow \frac{y}{20}=\frac{z}{24}$

$\Rightarrow \frac{x}{15}=\frac{y}{20}=\frac{z}{24}$ và đặt $=t$ (đk: $t\neq 0$)

$\Rightarrow x=15t; y=20t; z=24t$

Khi đó:

$M=\frac{2.15t+3.20t+4.24t}{3.15t+4.20t+5.24t}=\frac{186t}{245t}=\frac{186}{245}$

Đáp án B.

AH
Akai Haruma
Giáo viên
15 tháng 10 2021

Câu 10:

Giả sử số $A$ được chia thành 3 phần $a,b,c$ sao cho

$a:b:c=\frac{2}{5}: \frac{3}{4}: \frac{1}{6}$

Đặt $a=\frac{2}{5}t; b=\frac{3}{4}t; c=\frac{1}{6}t$

$A=a+b+c=\frac{2}{5}t+\frac{3}{4}t+\frac{1}{6}t=\frac{79}{60}t$

Có:

$a^2+b^2+c^2=(\frac{2}{5}t)^2+(\frac{3}{4}t)^2+(\frac{1}{6}t)^2=24309$

$t^2=32400$

$t=\pm 180$

$\Rightarrow A=\frac{79}{60}t=\frac{79}{60}\pm 180=\pm 237$

Đáp án D.