K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2021

\(\left\{{}\begin{matrix}x-2y=3\\2x+3y=-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\2\left(3+2y\right)+3y=-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\6+4y+3y=-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3+2y\\7y=-7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3+2\left(-1\right)\\y=-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-4y=6\\2x+3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=3+2y=3-2=1\end{matrix}\right.\)

15 tháng 11 2017

(Các phần giải thích học sinh không phải trình bày).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Vì hệ số của y ở 2 pt đối nhau nên cộng từng vế của 2 pt).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (2; -3).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Hệ số của x ở 2 pt bằng nhau nên ta trừ từng vế của 2pt)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Nhân cả hai vế của pt 2 với 2 để hệ số của x bằng nhau)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Hệ số của x bằng nhau nên ta trừ từng vế của 2 pt)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (3; -2).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

(Nhân hai vế pt 1 với 2, pt 2 với 3 để hệ số của y đối nhau)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Hệ số của y đối nhau nên cộng từng vế hai phương trình).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (-1; 0).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Nhân hai vế pt 1 với 4 để hệ số của y đối nhau)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Hệ số của y đối nhau nên ta cộng từng vế 2pt)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (5; 3).

Kiến thức áp dụng

Giải hệ phương trình bằng phương pháp cộng đại số

1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.

2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).

3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho và kết luận.

27 tháng 5 2021

\(\left\{{}\begin{matrix}x+y=80\\2x+3y=198\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+3y=240\\2x+3y=198\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+y=80\\x=240-198=42\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=42\\y=38\end{matrix}\right.\)

 

27 tháng 5 2021

\(\left\{{}\begin{matrix}x+y=80\\2x+3y=198\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x+2y=160\\2x+3y=198\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=38\\2x+3\cdot38=198\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=38\\2x=84\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=38\\x=42\end{matrix}\right.\)

Vậy (42;38) là nghiệm

 

29 tháng 8 2017

Đáp án A

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vậy với m = -6 thì hệ phương trình có nghiệm duy nhất (x, y) thỏa mãn x + y = -3

15 tháng 9 2018

Ta có

x + 2 y = m + 3 2 x − 3 y = m ⇔ 2 x + 4 y = 2 m + 6 2 x − 3 y = m ⇔ x + 2 y = m + 3 7 y = m + 6 ⇔ x = 5 m + 9 7 y = m + 6 7

Hệ phương trình có nghiệm duy nhất  ( x ;   y )   = 5 m + 9 7 ; m + 6 7  

Lại có x + y = −3 hay 5 m + 9 7 + m + 6 7 = − 3 ⇔ 5m + 9 + m + 6 = −21

⇔ 6m = −36 ⇔ m = −6

Vậy với m = −6 thì hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn x + y = −3

Đáp án: A

29 tháng 1 2018

Giải bài 40 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9

Phương trình 0x = 0 nghiệm đúng với mọi x nên hệ phương trình có vô số nghiệm dạng Giải bài 40 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9

KL: Đồ thị hai hàm số trên trùng nhau. Vậy hệ phương trình có vô số nghiệm

Giải bài 40 trang 27 SGK Toán 9 Tập 2 | Giải toán lớp 9

Đặt 1/(x+2y)=a; y=b

=>a+b=-2 và 2a-3b=1

=>a=-1; b=-1

=>y=-1; x+2y=-1

=>y=-1; x=-1-2y=-1-2*(-1)=-1+2=1

6 tháng 11 2019

ĐK:  x + 2 y ≠ 0 y + 2 x ≠ 0 ⇔ x ≠ − 2 y y ≠ − 2 x

Đặt 1 x + 2 y = u ; 1 2 x + y = v (u, v ≠ 0)

Khi đó, ta có hệ phương trình:

⇔ 2 u + v = 3 4 u + 3 v = 1 ⇔ v = 3 − 2 u 4 u + 3 3 − 2 u = 1 ⇔ v = 3 − 2 u u = 4    t m ⇔ u = 4 v = − 5      t m ⇒ 1 x + 2 y = 4 1 2 x + y = − 5 ⇔ 4 x + 8 y = 1 − 10 x − 5 y = 1 ⇔ x = − 13 60    t m y = 7 30     t m

Đáp án:C

25 tháng 7 2017

\(\left(xy+1\right)\left(2y-x\right)=2x^3y^2\Leftrightarrow2xy^2+2y-x^2y-x=2x^3y^2\)

\(\Leftrightarrow2xy^2+2y-x^2y+x=2x\left(x^2y^2+1\right)=2y^2.2x=4xy^2\)

\(\Leftrightarrow2y-x^2y+x-2xy^2=0\Leftrightarrow\left(2y+x\right)\left(1-xy\right)=0\Rightarrow\orbr{\begin{cases}x=-2y\\xy=1\end{cases}.}\)

Đến đây thì dễ rồi

24 tháng 7 2017

Có 1 ý tưởng nhưng mà khùng v ler ấy :))

Từ \(x^2y^2+1=2y^2\Rightarrow x^2y^2-2y^2=-1\)

\(\Rightarrow y^2\left(x^2-2\right)=-1\Rightarrow y^2=\frac{1}{2-x^2}\Rightarrow y=\frac{1}{\sqrt{2-x^2}}\)

\(pt\left(1\right)\Rightarrow\left(x\sqrt{\frac{1}{\: 2-x^2}}+1\right)\left(2\sqrt{\frac{1}{\: 2-x^2}}-x\right)=2x^3\left(\sqrt{\frac{1}{\: 2-x^2}}\right)^2\)

\(\Leftrightarrow\frac{x^2\sqrt{2-x^2}}{x^2-2}-\frac{2\sqrt{2-x^2}}{x^2-2}-\frac{x^3}{x^2-2}=\frac{2x^3}{2-x^2}\)

\(\Leftrightarrow\frac{x^2\sqrt{2-x^2}}{x^2-2}-\frac{2\sqrt{2-x^2}}{x^2-2}+\frac{x^3}{x^2-2}=0\)

\(\Leftrightarrow\frac{x^2\sqrt{2-x^2}}{x^2-2}+1-\frac{2\sqrt{2-x^2}}{x^2-2}-2+\frac{x^3}{x^2-2}+1=0\)

\(\Leftrightarrow\frac{x^2\sqrt{2-x^2}+x^2-2}{x^2-2}-\frac{2\sqrt{2-x^2}-\left(2x^2-4\right)}{x^2-2}+\frac{x^3+x^2-2}{x^2-2}=0\)

\(\Leftrightarrow\frac{\frac{x^4\left(2-x^2\right)-\left(x^2-2\right)^2}{x^2\sqrt{2-x^2}-x^2+2}}{x^2-2}-\frac{\frac{4\left(2-x^2\right)-\left(2x^2-4\right)^2}{2\sqrt{2-x^2}+\left(2x^2-4\right)}}{x^2-2}+\frac{\left(x-1\right)\left(x^2+2x+2\right)}{x^2-2}=0\)

\(\Leftrightarrow\frac{\frac{-\left(x-1\right)\left(x+1\right)\left(x^2-2\right)\left(x^2+2\right)}{x^2\sqrt{2-x^2}-x^2+2}}{x^2-2}-\frac{\frac{-4\left(x-1\right)\left(x+1\right)\left(x^2-2\right)}{2\sqrt{2-x^2}+\left(2x^2-4\right)}}{x^2-2}+\frac{\left(x-1\right)\left(x^2+2x+2\right)}{x^2-2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{\frac{-\left(x+1\right)\left(x^2-2\right)\left(x^2+2\right)}{x^2\sqrt{2-x^2}-x^2+2}}{x^2-2}-\frac{\frac{-4\left(x+1\right)\left(x^2-2\right)}{2\sqrt{2-x^2}+\left(2x^2-4\right)}}{x^2-2}+\frac{x^2+2x+2}{x^2-2}\right)=0\)

\(\Rightarrow x=1\Rightarrow y=\frac{1}{\sqrt{2-x^2}}=1\)

Ôi chúa :)) nhầm dấu thảo nào ngồi từ chiều tới giờ ko ra :))