K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 11 2019

\(\Leftrightarrow\left\{{}\begin{matrix}1+\frac{10xy}{\left(x^2+3\right)\left(y^2+1\right)}=0\\\frac{x}{x^2+3}+\frac{y}{y^2+1}=-\frac{3}{20}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{\left(x^2+3\right)}.\frac{y}{\left(y^2+1\right)}=-\frac{1}{10}\\\frac{x}{x^2+3}+\frac{y}{y^2+1}=-\frac{3}{20}\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\frac{x}{x^2+3}=a\\\frac{y}{y^2+1}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}ab=-\frac{1}{10}\\a+b=-\frac{3}{20}\end{matrix}\right.\)

Theo Viet đảo, a và b là nghiệm:

\(t^2+\frac{3}{20}t-\frac{1}{10}=0\Rightarrow\left[{}\begin{matrix}t=\frac{1}{4}\\t=-\frac{2}{5}\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}\frac{x}{x^2+3}=\frac{1}{4}\\\frac{y}{y^2+1}=-\frac{2}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2-4x+3=0\\2y^2+5y+2=0\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}\frac{x}{x^2+3}=-\frac{2}{5}\\\frac{y}{y^2+1}=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x^2+5x+6=0\\y^2-4y+1=0\end{matrix}\right.\)

25 tháng 11 2019

cảm ơn bạn nhìu nhé

Đề sai rồi bạn

AH
Akai Haruma
Giáo viên
12 tháng 3 2020

Lời giải:

PT $(2)\Leftrightarrow \left(\frac{x}{y}+y\right)^2-2x+2\sqrt{x^2+1}=3$

$\Leftrightarrow \frac{(x+y^2)^2}{y^2}+2(\sqrt{x^2+1}-x)=3$

PT $(1)\Leftrightarrow (x+y^2)+\frac{y(\sqrt{x^2+1}-x)}{(\sqrt{x^2+1}+x)(\sqrt{x^2+1}-x)}=0$

$\Leftrightarrow (x+y^2)+y(\sqrt{x^2+1}-x)=0$

Đặt $x+y^2=a; \sqrt{x^2+1}-x=b$ thì ta thu được:

\(\left\{\begin{matrix} \frac{a^2}{y^2}+2b=3\\ a+yb=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a^2+2by^2=3y^2\\ a^2=(yb)^2\end{matrix}\right.\)

\(\Rightarrow (yb)^2+2by^2=3y^2\)

\(\Rightarrow b^2+2b=3\) (do $y\neq 0$)

$\Rightarrow b=1$ hoặc $b=-3$. Hiển nhiên $b=\sqrt{x^2+1}-x>\sqrt{x^2}-x=|x|-x\geq 0$ nên $b=1$

Do đó: $\sqrt{x^2+1}-x=1$

$\Rightarrow \sqrt{x^2+1}=x+1$

$\Rightarrow x^2+1=(x+1)^2=x^2+2x+1$

$\Rightarrow x=0$ (thỏa mãn)

Thay vào PT đầu tiên suy ra $y=- 1$

Vậy.......

18 tháng 1 2016

vào chtt

5 tháng 4 2016

\(\begin{cases}27x^3+3x+\left(9y-7\right)\sqrt{6-9y}=0\left(1\right)\\\frac{x^2}{3}+y^2+\sqrt{2-3x}-\frac{109}{81}=0\left(2\right)\end{cases}\)

Với điều kiện \(x\le\frac{2}{3};y\le\frac{2}{3}\) (1) tương đương với : \(\left(9x^2+1\right)3x=\left(6-9y+1\right)\sqrt{6-9y}\)

Đặt \(u=3x,v=\sqrt{6-9y}\) ta có \(\left(u^2+1\right)u=\left(v^2+1\right)v\)

Xét hàm số : \(f\left(t\right)=\left(t^2+1\right)t\) có \(f'\left(t\right)=3t^2+1>0\) nên hàm số luôn đồng biến trên R

Suy ra \(u=v\Leftrightarrow3x=\sqrt{6-9y}\Leftrightarrow\begin{cases}x\ge0\\y=\frac{2}{3}-x^2\left(3\right)\end{cases}\)

Thế (3) vào (2) ta được \(\frac{x^2}{3}+\left(\frac{2}{3}-x^2\right)^2+\sqrt{2-3x}-\frac{109}{81}=0\left(4\right)\)

Nhận xét \(x=0;x=\frac{2}{3}\) không phải là nghiệm của (4)

Xét hàm số : \(g\left(x\right)=\frac{x^2}{3}+\left(\frac{2}{3}-x^2\right)^2+\sqrt{2-3x}-\frac{109}{81}\)

Ta có \(g'\left(x\right)=2x\left(2x-1\right)-\frac{3}{2\sqrt{2-3x}}<0\), mọi \(x\in\left(0;\frac{2}{3}\right)\)

Nên hàm số g(x) nghịch biến trên \(\left(0;\frac{2}{3}\right)\)

Dễ thấy \(x=\frac{1}{3}\) là nghiệm của (1), suy ra \(y=\frac{5}{9}\) nên hệ có nghiệm duy nhất là \(\left(\frac{1}{3};\frac{5}{9}\right)\)

a,\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)

ĐK: \(x+y\ge0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy+\frac{2xy}{x+y}=1\left(1\right)\\\sqrt{x+y}=x^2-y\left(2\right)\end{cases}}\)

Đặt \(\hept{\begin{cases}x+y=a\\2xy=b\end{cases}\left(a\ge0\right)}\)

\(\left(1\right)\Leftrightarrow a^2-b+\frac{b}{a}=1\)

\(\Leftrightarrow a^3-ab-a+b=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\a^2+a-b=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x+y=1\left(3\right)\\\left(x+y\right)^2+\left(x+y\right)-xy=0\left(4\right)\end{cases}}\)

Thay (3) vào (2)  ta được

\(x^2-y=1\Leftrightarrow y=x^2-1\)

\(\Rightarrow1-x=x^2-1\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=0\\x=-2\Rightarrow y=3\end{cases}}\)

Giải (4) 

Ta có \(\left(x+y\right)^2\ge4xy\Rightarrow\left(x+y\right)^2-xy>0\)

do đó (4) không xảy ra

Vậy..........