K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2020

Ta có: 

\(\hept{\begin{cases}x^2+y^2+2y=4\\2x+y+xy=4\end{cases}}\)

<=> \(\hept{\begin{cases}x^2+y^2+2y=4\\4x+2y+2xy=8\end{cases}}\)

=>\(x^2+y^2+4y+4x+2xy-12=0\)

<=> \(\left(x+y\right)^2+4\left(x+y\right)-12=0\)

<=> \(\orbr{\begin{cases}x+y=2\\x+y=-6\end{cases}}\)

TH1: Với x + y = 2 ta có: y = 2 - x 

Thế vào phương trình (2) ta có: \(2x+2-x+x\left(2-x\right)=4\)

<=> \(x^2-3x+2=0\)<=> x = 2 hoặc x = 1 

Với x = 2 ta có: y = 0 thử lại thỏa mãn 

Với x = 1 ta có: y = 1 thử lại thỏa mãn 

+) TH2: Với x + y =- 6 ta có: y = -6 - x 

Thế vào phương trình (2) ta có: \(2x-6-x+x\left(-6-x\right)=4\)

<=> \(x^2+5x+10=0\)phương trình vô nghiệm 

Vậy:...

1 tháng 9 2019

 Mk nghĩ đề bài nên cho x ;y là số nguyên

Ta có:\(x^2y+xy^2+x+y+xy=11\)

\(\Rightarrow xy\left(x+y\right)+\left(x+y\right)+xy=11\)

\(\Rightarrow\left(xy+1\right)\left(x+y\right)+\left(xy+1\right)=12\)

\(\Rightarrow\left(xy+1\right)\left(x+y\right)=12\)

Từ đây => \(\inƯ\left(12\right)\)

Làm nốt

10 tháng 8 2016

1/ đặt x+y = a

xy=b

Ta có a(a2 - 3b) = 19

a(8+b)=2

Dùng phương pháp thế rồi giải tìm được a=1; b=-6

Từ đó ta suy ra x=-2 và y=3 hoặc x=3 và y =-2

10 tháng 8 2016

2/ ta có 3x+4 xy + y= 0 <=> (2x+y)- x = 0 <=> (3x+y)(x+y)=0 từ đó dùng phương pháp thế vào phương trình còn lại là ra