K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{1}{x}-\dfrac{4}{y}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{2}{x}-\dfrac{8}{y}=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{y}=11\\\dfrac{1}{x}-\dfrac{4}{y}=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\\dfrac{1}{x}=-3+\dfrac{4}{y}=-3+4=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{36}{x-3}-\dfrac{15}{y+2}=189\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{44}{x-3}=176\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=\dfrac{1}{4}\\\dfrac{15}{y+2}=-13-\dfrac{8}{x-3}=-13-32=-45\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{13}{4}\\y=-\dfrac{1}{3}-2=-\dfrac{7}{3}\end{matrix}\right.\)

18 tháng 1 2021

b) ĐKXĐ: \(x,y\neq 0\).

Ta có: \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=\dfrac{1}{x}-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=\dfrac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-y=0\\xy=-1\end{matrix}\right.\\2y=x^3+1\end{matrix}\right.\).

Với x - y = 0 suy ra x = y. Do đó \(2x=x^3+1\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1=y\left(TMĐK\right)\\x=\pm\dfrac{\sqrt{5}-1}{2}=y\left(TMĐK\right)\end{matrix}\right.\).

Với xy = -1 suy ra \(y=-\dfrac{1}{x}\). Do đó \(x^3+\dfrac{2}{x}+1=0\Rightarrow x^4+x+2=0\). Phương trình vô nghiệm do \(x^4+x+2=\left(x^2-\dfrac{1}{2}\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{2}>0\).

Vậy...

19 tháng 1 2021

Em cảm ơn ạ !

30 tháng 3 2017

a)\(\left\{{}\begin{matrix}2x-3y=1\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\cdot\left(3-2y\right)-3y=1\\x=3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6-7y=1\\x=3-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{7}\\x=3-2\cdot\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{7}\\x=\dfrac{11}{7}\end{matrix}\right.\)b) Biểu diễn lại một biến theo một biến như pt trên rồi giải, ta có :

\(\left\{{}\begin{matrix}2x+4y=5\\4x-2y=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{10}\\y=\dfrac{4}{5}\end{matrix}\right.\)

c) Cách làm tương tự như pt a ta có :

\(\left\{{}\begin{matrix}\dfrac{2}{3}x+\dfrac{1}{2}y=\dfrac{2}{3}\\\dfrac{1}{3}x-\dfrac{3}{4}y=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{8}\\y=-\dfrac{1}{6}\end{matrix}\right.\)

d) Tương tự ta có :

\(\left\{{}\begin{matrix}0,3x-0,2y=0,5\\0,5x+0,4y=1,2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

25 tháng 6 2019

5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)

Thay từng TH rồi làm nha bạn

3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)

thay nhá

3 tháng 11 2019

Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)

PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)

+) Với y = x - 1 thay vào pt (2):

\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))

Anh quy đồng lên đê, chắc cần vài con trâu đó:))

+) Với y = 2x + 3...

26 tháng 12 2021

\(1,HPT\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)+\left(\dfrac{1}{y}-\dfrac{1}{x}\right)=0\\2y=x^3+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\dfrac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y\\2y=x^3+1\end{matrix}\right.\\ \Leftrightarrow2y=y^3+1\Leftrightarrow y^3-2y+1=0\\ \Leftrightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{-1+\sqrt{5}}{2}\\y=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(0;0\right);\left(\dfrac{-1+\sqrt{5}}{2};\dfrac{-1+\sqrt{5}}{2}\right);\left(\dfrac{-1-\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right)\)

\(2,HPT\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(x^2+y^2\right)}+2\sqrt{xy}=16\\x+y+2\sqrt{xy}=16\end{matrix}\right.\\ \Leftrightarrow\sqrt{2\left(x^2+y^2\right)}=x+y\\ \Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x=y\\ \Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4\)

Vậy \(\left(x;y\right)=\left(4;4\right)\)

26 tháng 12 2021

\(3,\text{Sửa: }\left\{{}\begin{matrix}\sqrt{x^2+3}+\left|y\right|=\sqrt{3}\left(1\right)\\\sqrt{y^2+5}+\left|x\right|=\sqrt{x^2+5}\left(2\right)\end{matrix}\right.\)

Ta thấy \(\sqrt{x^2+3}\ge\sqrt{3};\left|y\right|\ge0\Leftrightarrow VT\left(1\right)\ge\sqrt{3}=VP\left(1\right)\)

Dấu \("="\Leftrightarrow x=y=0\)

Thay vào \(\left(2\right)\Leftrightarrow\sqrt{5}+0=\sqrt{5}\left(tm\right)\)

Vậy \(\left(x;y\right)=\left(0;0\right)\)

9 tháng 8 2018

1. \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=5\\x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=9\end{matrix}\right.\) ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y+xy^2+x+y=5xy\\x^4y^2+x^2y^4+x^2+y^2=9x^2y^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^4y^2+x^2y^4+x^2+y^2=25x^2y^2\\x^4y^2+x^2y^4+x^2+y^2=9x^2y^2\end{matrix}\right.\)\(\Leftrightarrow0=16x^2y^2\)

\(\Rightarrow\) phương trình vô nghiệm

17 tháng 11 2017

a,\(\left\{{}\begin{matrix}-7x+3y=-5\\5x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-14x+6y=-10\\15x+6y=12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\5x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

\(\Leftrightarrow2x-y=3\)

b,\(\left\{{}\begin{matrix}4x-2y=6\\-2x+y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=3\\2x-y=3\end{matrix}\right.\Leftrightarrow2x-y=3\)

Vậy hệ phương trình có vô số nghiệm (x;y)= (a;2a-3), a tùy ý

c, \(\left\{{}\begin{matrix}-0,5x+0,4y=0,7\\0,3x-0,2y=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-0,5x+0,4y=0,7\\0,6x-0,4y=0,8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=15\\0,3x-0,2y=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=15\\y=20,5\end{matrix}\right.\)

d, \(\left\{{}\begin{matrix}\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\\-\dfrac{2}{3}x-\dfrac{5}{9}y=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\\-\dfrac{3}{5}x-\dfrac{1}{2}y=\dfrac{6}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{11}{6}y=\dfrac{8}{5}\\\dfrac{3}{5}x-\dfrac{4}{3}y=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{14}{11}\\y=-\dfrac{48}{55}\end{matrix}\right.\)

29 tháng 12 2021

\(1,ĐK:x,y\ne0\\ HPT\Leftrightarrow\left\{{}\begin{matrix}2x^2y^2=y^3+1\\2x^2y^2=x^3+1\end{matrix}\right.\\ \Leftrightarrow x^3+1=y^3+1\\ \Leftrightarrow x^3=y^3\Leftrightarrow x=y\)

Thay vào PT 1

\(\Leftrightarrow2x^4=x^3+1\\ \Leftrightarrow2x^4-x^3-1=0\\ \Leftrightarrow2x^4-2x^3+x-1=0\\ \Leftrightarrow\left(2x^3+1\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^3=-\dfrac{1}{2}\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=\sqrt[3]{-\dfrac{1}{2}}\\x=y=1\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(\sqrt[3]{-\dfrac{1}{2}};\sqrt[3]{-\dfrac{1}{2}}\right);\left(1;1\right)\)

\(2,ĐK:x,y\ge1\\ HPT\Leftrightarrow\left\{{}\begin{matrix}2\left(x-1\right)+\sqrt{y-1}=\dfrac{1}{2}\\2\left(y-1\right)+\sqrt{x-1}=\dfrac{1}{2}\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)

\(HPT\Leftrightarrow\left\{{}\begin{matrix}2a^2+b=\dfrac{1}{2}\\2b^2+a=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow2\left(a-b\right)\left(a+b\right)-\left(a-b\right)=0\\ \Leftrightarrow\left(a-b\right)\left(2a+2b-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=b\\2a+2b=1\end{matrix}\right.\)

Với \(a=b\Leftrightarrow x-1=y-1\Leftrightarrow x=y\)

Thay vào \(PT\left(1\right)\Leftrightarrow2x+\sqrt{x-1}=\dfrac{5}{2}\Leftrightarrow2\sqrt{x-1}=5-4x\)

\(\Leftrightarrow4x-4=25-40x+16x^2\\ \Leftrightarrow16x^2-44x+29=0\\ \Leftrightarrow\left[{}\begin{matrix}x=y=\dfrac{11+\sqrt{5}}{8}\left(tm\right)\\x=y=\dfrac{11-\sqrt{5}}{8}\left(tm\right)\end{matrix}\right.\)

Với \(2a+2b=1\Leftrightarrow b=\dfrac{1}{2}-a\Leftrightarrow\sqrt{y-1}=\dfrac{1}{2}-\sqrt{x-1}\)

Thay vào \(PT\left(1\right)\Leftrightarrow2x+\dfrac{1}{2}-\sqrt{x-1}=\dfrac{5}{2}\Leftrightarrow2x-2=\sqrt{x-1}\)

\(\Leftrightarrow4x^2-8x+4=x-1\\ \Leftrightarrow4x^2-9x+5=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\Rightarrow y=1\left(tm\right)\\x=1\Rightarrow y=\dfrac{5}{4}\left(tm\right)\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(\dfrac{11+\sqrt{5}}{8};\dfrac{11+\sqrt{5}}{8}\right);\left(\dfrac{11-\sqrt{5}}{8};\dfrac{11-\sqrt{5}}{8}\right);\left(\dfrac{5}{4};1\right);\left(1;\dfrac{5}{4}\right)\)

NV
27 tháng 7 2021

a.

\(\left\{{}\begin{matrix}x^2+y^2=\dfrac{1}{2}\\x^3+3xy^2=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y^2=\dfrac{1}{2}-x^2\\x^3+3xy^2=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow x^3+3x\left(\dfrac{1}{2}-x^2\right)=\dfrac{1}{2}\)

\(\Leftrightarrow4x^3-3x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-1\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)

- Với \(x=-1\) thế vào pt đầu: \(1+y^2=\dfrac{1}{2}\Rightarrow y^2=-\dfrac{1}{2}\) (vô nghiệm)

- Với \(x=\dfrac{1}{2}\) thế vào pt đầu: \(\dfrac{1}{4}+y^2=\dfrac{1}{2}\Rightarrow y=\pm\dfrac{1}{2}\)

27 tháng 7 2021

\(\left\{{}\begin{matrix}x^2+y^2=\dfrac{1}{2}\\x^3+3xy^2=\dfrac{1}{2}\end{matrix}\right.\)

Dễ thấy x = 0 không phải nghiệm ta nhân tử mẫu phương trình đầu cho 3x thì được

\(\Leftrightarrow\left\{{}\begin{matrix}3x^3+3xy^2=\dfrac{3x}{2}\left(1\right)\\x^3+3xy^2=\dfrac{1}{2}\left(2\right)\end{matrix}\right.\)

Lấy (1) - (2) thì đơn giản rồi ha