Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-3}{5}=\frac{x+4}{-2}\)
=> (x - 3). (-2) = 5(x + 4)
=> -2x + 6 = 5x + 20
=> -2x - 5x = 20 - 6
=> -7x = 14
=> x = 14 : (-7)
=> x = -2
x-3/5=x+4/-2
=> ﴾x ‐ 3﴿. ﴾‐2﴿ = 5﴾x + 4﴿
=> ‐2x + 6 = 5x + 20
=> ‐2x ‐ 5x = 20 ‐ 6 => ‐7x = 14 => x = 14 : ﴾‐7﴿
=> x = ‐2
> =<
(3x+2)(x-1)=0
vi.(3x+2)(x-1)=0
suy ra3x+2=0 hoacx-1=0
với3x+2=0
3x=-2
x=-2/3
vớix-1=0
x=1
3x^2 - 3x + 2x - 2 = 0
3x^2 - x - 2 = 0
3x^2 - 3x + 2x -2 = 0
3x(x - 1) + 2(x - 1) = 0
(x - 1) * (3x + 2) =0
x - 1 = 0 hoặc 3x + 2 =0
x = 1 hoặc x = -2/3
Vì (x+1).(x-2)=-2
=> (x+1);(x-2) thuộc Ư(-2)={-2;-1;1;2}
Ta có bảng sau:
x+1 | -2 | -1 | 1 | 2 |
x | -3 | -2 | 0 | 1 |
x-2 | 1 | 2 | -2 | -1 |
x | 3 | 4 | 0 | 1 |
Vì x giống nhau nên ta chỉ chọn cặp x giống nhau
=> x=0 và x=1
Mik mới học lớp 6 nên chưa chắc nếu sai thì thông cảm nhé
(x+1) . (x-2) = -2
<=>x2-x-2=-2
<=>x2-x=0
<=>x(x-1)=0
<=>x=0 hoặc x-1=0
<=>x=0 hoặc 1
a: Ta có: \(\left(x-\dfrac{2}{5}\right)\left(x+\dfrac{2}{7}\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{2}{5}\\x< -\dfrac{2}{7}\end{matrix}\right.\)
\(\left(x-1\right)\left(x+2\right)< 0\) <=> x-1 và x+2 khác dấu
Mà x-1 < x+2 nên \(\hept{\begin{cases}x-1< 0\\x+2>0\end{cases}=>\hept{\begin{cases}x< 1\\x>-2\end{cases}=>-2< x< 1}}\)
Vậy.........
\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\) <=> x-2 và x+2/3 cùng dấu
\(\left(+\right)\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}=>\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}=>x< -\frac{2}{3}}}\)
\(\left(+\right)\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}=>\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}=>x>2}}\)
Vậy x>2 hoặc x<-2/3