Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)
Ta lấy vễ trên chia vế dưới
\(=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)
Ta lấy vế trên chia vế dưới
\(=2^3.3=24\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)
Câu 3:
a: \(BD=\sqrt{BC^2-DC^2}=4\left(cm\right)\)
b: \(\widehat{A}=180^0-2\cdot70^0=40^0< \widehat{B}\)
nên BC<AC=AB
c: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó:ΔEBC=ΔDCB
d: Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)
nên ΔOBC cân tại O
Câu 2
a) Thay y = -2 vào biểu thức đã cho ta được:
2.(-2) + 3 = -1
Vậy giá trị của biểu thức đã cho tại y = -2 là -1
b) Thay x = -5 vào biểu thức đã cho ta được:
2.[(-5)² - 5] = 2.(25 - 5) = 2.20 = 40
Vậy giá trị của biểu thức đã cho tại x = -5 là 40
\(t,=\dfrac{3^{64}\cdot7^{24}}{7^{23}\cdot9^{66}}=\dfrac{7}{3^2}=\dfrac{7}{9}\\ u,=\dfrac{5^3\cdot3^4\cdot2^5}{5^2\cdot3^3\cdot2^4}=5\cdot3\cdot2=30\\ v,=\dfrac{3^6\cdot2^{15}}{2^6\cdot3^6\cdot2^8}=2\)
\(\left[{}\begin{matrix}x-1,7=2,3\\x-1,7=-2,3\end{matrix}\right.\left[{}\begin{matrix}x=4\\x\neg-\dfrac{3}{5}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x+\dfrac{3}{4}=\dfrac{1}{3}\\x+\dfrac{3}{4}=-\dfrac{1}{3}\end{matrix}\right.\left[{}\begin{matrix}x=-\dfrac{5}{12}\\x=-\dfrac{13}{12}\end{matrix}\right.\)
Bài 11:
d. áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{2x+5y}{6+20}=\dfrac{10}{26}=\dfrac{5}{13}\)
\(\dfrac{x}{3}=\dfrac{5}{13}\Rightarrow x=\dfrac{15}{13}\\ \dfrac{y}{4}=\dfrac{5}{13}\Rightarrow y=\dfrac{20}{13}\)
e. \(\dfrac{2x}{3y}=-\dfrac{1}{3}\Leftrightarrow\dfrac{2x}{-1}=\dfrac{3y}{3}\Leftrightarrow\dfrac{-2x}{1}=\dfrac{3y}{3}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{-2x}{1}=\dfrac{3y}{3}=\dfrac{-2x+3y}{1+3}=\dfrac{7}{4}\)
\(\dfrac{-2x}{1}=\dfrac{7}{4}\Rightarrow x=-\dfrac{7}{8}\\ \dfrac{3y}{3}=\dfrac{7}{4}\Rightarrow y=\dfrac{7}{4}\)
f. \(x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{1}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{1}=\dfrac{x-y}{3-1}=\dfrac{16}{2}=8\)
\(\dfrac{x}{3}=8\Rightarrow x=24\\ \dfrac{y}{1}=8\Rightarrow y=8\)