K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 3 2022

Chắc là biến đổi trong bài tìm pt mặt phẳng

Từ hệ 2 pt đầu ta rút ra được: \(\left\{{}\begin{matrix}c=-a-b\\d=2a+b\end{matrix}\right.\)

Thế vào pt cuối:

\(\dfrac{\left|3a-b\right|}{\sqrt{a^2+b^2+\left(a+b\right)^2}}=\dfrac{3}{\sqrt{2}}\)

\(\Rightarrow2\left(3a-b\right)^2=9\left(a^2+b^2\right)+9\left(a+b\right)^2\)

\(\Rightarrow15ab+8b^2=0\Rightarrow\left[{}\begin{matrix}b=0\\b=-\dfrac{15a}{8}\end{matrix}\right.\)

NV
11 tháng 12 2021

Đề bài sai, góc giữa SC và (SAB) luôn nhỏ hơn 45 độ

Nếu góc lớn hơn 45 độ (như đề bài là góc 60 độ) thì độ dài SA sẽ tính ra 1 số âm!

11 tháng 12 2021

Mới hỏi cô bảo là 30⁰🤦🤦🤦

NV
5 tháng 5 2021

Phương trình mặt phẳng (P) qua A và vuông góc \(\overrightarrow{a}\) có dạng:

\(4\left(x-1\right)+2\left(y-1\right)-1\left(z+2\right)=0\)

\(\Leftrightarrow4x+2y-z-8=0\)

Gọi B là giao điểm (P) và \(\Delta\Rightarrow\) tọa độ B thỏa mãn:

\(4\left(2-t\right)+2\left(3+2t\right)-\left(1+3t\right)-8=0\) \(\Rightarrow t=\dfrac{5}{3}\) \(\Rightarrow B\left(\dfrac{1}{3};\dfrac{19}{3};6\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(-\dfrac{2}{3};\dfrac{16}{3};8\right)=\dfrac{2}{3}\left(-1;8;12\right)\)

Phương trình d: \(\left\{{}\begin{matrix}x=1-t\\y=1+8t\\z=-2+12t\end{matrix}\right.\)

22 tháng 9 2021

Giúp mình với mn

 

23 tháng 9 2021

Đề yêu cầu gì?

 

8 tháng 4 2023

bằng 12456789

 

NV
2 tháng 11 2021

Đặt tên các điểm như hình vẽ, với H là trung điểm AB

\(\Rightarrow\widehat{SHO}=60^0\) (là góc giữa thiết diện và đáy nón)

Tam giác SAB đều \(\Rightarrow SH=\dfrac{AB\sqrt{3}}{2}=2\sqrt{3}\) (trung tuyến tam giác đều)

\(\Rightarrow\left\{{}\begin{matrix}OH=SH.cos60^0=\sqrt{3}\\h=SO=SH.sin60^0=3\end{matrix}\right.\)

\(R=OA=\sqrt{AH^2+OH^2}=\sqrt{2^2+3}=\sqrt{7}\)

\(\Rightarrow V=\dfrac{1}{3}\pi R^2h=\dfrac{1}{3}\pi.7.3=7\pi\left(cm^3\right)\)

NV
2 tháng 11 2021

undefined

NV
1 tháng 3 2023

27.

Bán kính mặt cầu ngoại tiếp tứ diện vuông được tính bằng:

\(R=\sqrt{\dfrac{OA^2+OB^2+OC^2}{4}}=\sqrt{\dfrac{1^2+2^2+3^2}{4}}=\dfrac{\sqrt{14}}{2}\)

28.

Từ giả thiết suy ra \(A\left(2;2;2\right)\)

Gọi điểm thuộc mặt Oxz có tọa độ dạng \(D\left(x;0;z\right)\)

\(\Rightarrow\overrightarrow{AD}=\left(x-2;-2;z-2\right)\)

\(\overrightarrow{BD}=\left(x+2;-2;z\right)\) ; \(\overrightarrow{CD}=\left(x-4;-1;z+1\right)\)

D cách đều A, B, C \(\Rightarrow\left\{{}\begin{matrix}AD=BD\\AD=CD\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^2+4+\left(z-2\right)^2=\left(x+2\right)^2+4+z^2\\\left(x-2\right)^2+4+\left(z-2\right)^2=\left(x-4\right)^2+1+\left(z+1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+z=1\\2x-3z=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}z=-\dfrac{1}{2}\\x=\dfrac{3}{4}\end{matrix}\right.\)

\(\Rightarrow P\left(\dfrac{3}{4};0;-\dfrac{1}{2}\right)\)

NV
1 tháng 3 2023

29.

Do tâm I mặt cầu thuộc Oz nên tọa độ có dạng: \(I\left(0;0;z\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AI}=\left(-3;1;z-2\right)\\\overrightarrow{BI}=\left(-1;-1;z+2\right)\end{matrix}\right.\)

Mặt cầu qua A, B nên \(AI=BI\)

\(\Leftrightarrow3^2+1^2+\left(z-2\right)^2=1^2+1^2+\left(z+2\right)^2\)

\(\Leftrightarrow8z=8\Rightarrow z=1\)

\(\Rightarrow I\left(0;0;1\right)\Rightarrow R=IB=\sqrt{1^2+1^1+3^2}=\sqrt{11}\)

Phương trình mặt cầu:

\(x^2+y^2+\left(z-1\right)^2=11\)