Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 bạn tham khảo tại đây nhé:
Tim x,y,z thoa man : x^2 +5y^2 -4xy +10x-22y +Ix+y+zI +26 = 0 ...
Chúc bạn học tốt!
Câu a.
Ta luôn có
\(\frac{a}{a+b}>\frac{a}{a+b+c}\) (do a+b < a+b+c)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
Cộng theo từng vế rồi rút gọn ta đươc đpcm
Cảm ơn b nhé. B biết làm.câu b c d không giúp m với
2
a
\(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\)
\(\Rightarrow x^3+y^3+3x^2y+3xy^2=-z^3\)
\(\Rightarrow x^3+y^3+z^3=3xy\left(x+y\right)=3xyz\)
b
Đặt \(a-b=x;b-c=y;c-a=z\Rightarrow x+y+z=0\)
Ta có bài toán mới:Cho \(x+y+z=0\).Phân tích đa thức thành nhân tử:\(x^3+y^3+z^3\)
Áp dụng kết quả câu a ta được:
\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
a/ \(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3}{4}y^2+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\ge1>0\)
với mọi x,y
b/ \(x^2+5y^2+2x-4xy-16y+14=x^2-2x\left(2y-1\right)+\left(4y^2-4y+1\right)+\left(y^2-12y+36\right)-23\)
\(=\left(x-2y+1\right)^2+\left(y-6\right)^2-23\ge-23\)
Bạn xem lại đề
2 câu trên đã có kết quả, mình giải quyết câu c nhá
5x2 + 10y2 - 6xy - 4x - 2y + 3 > 0
5x2 + 10y2 - 6xy - 4x - 2y + 3 = x2 + 4x2 + y2 + 9y2 - 6xy - 4x - 2y + 3
=[(2x)2 - 2*2x + 1] + (y2 - 2y + 1) + [(3y)2 - 2*3y + x2 ] + 1
=(2x + 1)2 + (y - 1)2 + (3y - x)2 + 1
(2x + 1)2 \(\ge\)0 với mọi x
(y - 1)2 \(\ge\) 0 với mọi y
(3y - x)2\(\ge\) 0 với mọi x và y
1>0
=> ĐPCM