Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
1: \(\sqrt{3+2\sqrt{2}}=\sqrt{2}+1\)
2: \(\sqrt{5-2\sqrt{6}}=\sqrt{3}-\sqrt{2}\)
3: \(\sqrt{11-2\sqrt{30}}=\sqrt{6}-\sqrt{5}\)
4: \(\sqrt{7-2\sqrt{10}}=\sqrt{5}-\sqrt{2}\)
1) \(\sqrt{2x-5}=7\)
\(\left(\sqrt{2x-5}\right)^2=7^2\)
\(2x-5=49\)
\(2x=54\)
\(x=27\)
2) \(3+\sqrt{x-2}=4\)
\(\sqrt{x-2}=1\)
\(\left(\sqrt{x-2}\right)^2=1^2\)
\(x-2=1\)
\(x=3\)
1) \(\sqrt{2x-5}=7\left(đk:x\ge\dfrac{5}{2}\right)\)
\(\Leftrightarrow2x-5=49\Leftrightarrow2x=54\Leftrightarrow x=27\left(tm\right)\)
2) \(3+\sqrt{x-2}=4\left(đk:x\ge2\right)\)
\(\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)
3) \(\Leftrightarrow\sqrt{\left(x-1\right)^2}=1\Leftrightarrow\left|x-1\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
4) \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\Leftrightarrow\left|x-2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
5) \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x+4\right)^2}\)
\(\Leftrightarrow\left|2x-1\right|=\left|x+4\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x+4\\2x-1=-x-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
6) \(ĐK:x\ge-2\)
\(\Leftrightarrow5\sqrt{x+2}-3\sqrt{x+2}-\sqrt{x+2}=\sqrt{x+7}\)
\(\Leftrightarrow\sqrt{x+2}=\sqrt{x+7}\)
\(\Leftrightarrow x+2=x+7\Leftrightarrow2=7\left(VLý\right)\)
Vậy \(S=\varnothing\)
7) \(ĐK:x\ge-1\)
\(\Leftrightarrow5\sqrt{2x+1}+3\sqrt{x+1}=4\sqrt{x+1}+4\sqrt{2x+1}\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{x+1}\)
\(\Leftrightarrow2x+1=x+1\Leftrightarrow x=0\left(tm\right)\)
\(A=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2}{x-1}\)
\(A=\dfrac{x+\sqrt{x}-2\sqrt{x}-2}{x-1}-\dfrac{x-\sqrt{x}+2\sqrt{x}-2}{x-1}-\dfrac{2}{x-1}\)
\(A=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2-2}{x-1}\)
\(A=\dfrac{2\sqrt{x}-2}{x-1}\)
\(A=\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2}{\sqrt{x}+1}\)
b)
\(\dfrac{2}{\sqrt{x}+1}=-1\)
=>\(\sqrt{x}+1=-2\)
\(\sqrt{x}=-3\)
ko có x thỏa mãn
b: =(m-1)^2-4(-m^2-2)
=m^2+2m+1+4m^2+8
=5m^2+2m+9
=5(m^2+2/5m+9/5)
=5(m^2+2*m*1/5+1/25+44/25)
=5(m+1/5)^2+44/5>=44/5>0 với mọi m
=>PT luôn có hai nghiệm pb
Đặt \(A=\sqrt{\sqrt2+2\sqrt{\sqrt2-1}}+\sqrt{\sqrt2-2\sqrt{\sqrt2+1}}\).
\(A=\sqrt{\sqrt2 +2\sqrt{\sqrt2-1}}+\sqrt{\sqrt2 -2\sqrt{\sqrt2+1}}\\=> A^2=\sqrt2+2\sqrt{\sqrt2-1}+\sqrt2-2\sqrt{\sqrt2+1}\\=2\sqrt2+2\sqrt{(\sqrt2+1)(\sqrt2-1)}\\=2\sqrt2+2\\=>A=\sqrt{2\sqrt2+2}\)
b: \(\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right):\dfrac{a-1}{\sqrt{a}+1}\)
\(=\left(a-2\sqrt{a}+1\right)\cdot\dfrac{\left(\sqrt{a}+1\right)}{a-1}\)
\(=\sqrt{a}-1\)
1) ĐKXĐ: \(x\ge0\)
2) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
3) ĐKXĐ: \(x\ge4\)
4) ĐKXĐ: \(x>16\)
5) ĐKXĐ: \(\left[{}\begin{matrix}x\le-2\\x\ge0\end{matrix}\right.\)
6) ĐKXĐ: \(\left[{}\begin{matrix}x\le-1\\x\ge4\end{matrix}\right.\)
7) ĐKXĐ: \(\left[{}\begin{matrix}1\le x\\x< 3\end{matrix}\right.\)
8) ĐKXĐ: \(\left[{}\begin{matrix}x\le-2\\x>3\end{matrix}\right.\)
9) ĐKXĐ: \(x\in R\)
10) ĐKXĐ: \(x\in R\)
11) ĐKXĐ: \(x\in R\)
12) ĐKXĐ: \(x\in R\)
13) ĐKXĐ: \(x\in R\)
14) ĐKXĐ: \(x\in R\)
15) ĐKXĐ: \(x\in R\)
16) ĐKXĐ: \(x\ne-\dfrac{1}{2}\)
17) ĐKXĐ: \(x\ge7\)
18) ĐKXĐ: \(x\ge-5\)
Bài 1:
\(\sin\widehat{A}=\dfrac{BC}{BA}\)
\(\cos\widehat{A}=\dfrac{CA}{AB}\)
\(\tan\widehat{A}=\dfrac{BC}{CA}\)
\(\cot\widehat{A}=\dfrac{CA}{BC}\)
cô hoặc cj j ơi em đang cần 8 bài ạ