Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)
ĐKXĐ: x ≠ 2
\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)
\(\Leftrightarrow\dfrac{2+3\left(x-2\right)}{x-2}=\dfrac{3-x}{x-2}\)
<=> 2 + 3x - 6 = 3 - x
<=> 2 + 3x - 6 - 3 + x = 0
<=> 4x - 7 = 0
\(\Leftrightarrow x=\dfrac{7}{4}\)
Vậy:...
\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\) (ĐKXĐ \(x\ne2\))
\(\Leftrightarrow\dfrac{1}{x-2}+\dfrac{3\left(x-2\right)}{x-2}=\dfrac{3-x}{x-2}\)
\(\Leftrightarrow\dfrac{1+3x-6}{x-2}=\dfrac{3-x}{x-2}\)
\(\Rightarrow3x-5=3-x\)
\(\Leftrightarrow3x+x=3+5\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\)
Mà \(x\ne2\) nên phương trình đề bài cho vô nghiệm
Ta có
a/3x^2y/3xy =3xy.x/3xy=x/2y^2
b/Ta có
x^2+2x/3x+6=x(x+2)/3(x+2)=x/3
c/Ta có
3x+3/3x = 3(x+1)/3x=x+1/x
-Vân đúng
Là khai triển đa thức hay tính hả em? Muốn tính thì phải có điều kiện của $x$ chứ?
\(a,x^2-2x=0< =>x\left(x-2\right)=0< =>\orbr{\begin{cases}x=0\\x-2=0\end{cases}}< =>\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy nghiệm của phương trình là.....
\(b,x^2-7x-10=0< =>x^2-2x-5x-10=0< =>x\left(x-2\right)-5\left(x+2\right)=0\)
bn xem lại đề câu b, chút
mik thấy bài nay dễ mà
Ta có : \(\left|9+x\right|=\left\{{}\begin{matrix}9+x\\-\left(9+x\right)\end{matrix}\right.\) khi 9+x\(\ge0\) hay x\(\ge-9\) khi 9+x<0 hay x<-9
+) Nếu \(x\ge-9\) thì py có dạng :
9+x=2x
\(\Leftrightarrow9=2x-x\)
\(\Leftrightarrow9=x\)
\(\Leftrightarrow x=9\) ( thỏa mãn)
+) Nếu x<-9 thì pt có dạng :
-9-x=2x
\(\Leftrightarrow-x-2x=9\)
\(\Leftrightarrow-3x=9\)
\(\Leftrightarrow x=-3\) ( ko thỏa mãn)
Vậy tập nghiệm của pt la S={9}
\(\left|9+x\right|=2x\)
* Nếu 9 + x \(\ge\)0 thì x \(\ge\) -9. Ta có:
9 + x = 2x
\(\Leftrightarrow\) x + 2x = 9
\(\Leftrightarrow\) 3x = 9
\(\Leftrightarrow\) x = 3 ( Thỏa mãn )
* Nếu 9 + x < 0 thì x < - 9. Ta có :
- 9 - x = 2x
\(\Leftrightarrow\) - x - 2x = 9
\(\Leftrightarrow\) -3x = 9
\(\Leftrightarrow\) x = -3 ( Loại )
Vậy phương trình có nghiệm là x = 3
a: ĐKXĐ: x<>0
\(\Leftrightarrow3x^2+10x-3x-10=0\)
=>(3x+10)(x-1)=0
=>x=-10/3 hoặc x=1
b: ĐKXĐ: \(x\in R\)
\(\Leftrightarrow4x-17=0\)
hay x=17/4
c: ĐKXĐ: \(x\ne-5\)
=>2x-5=0
hay x=5/2
d: ĐKXĐ: x<>-2/3
\(\Leftrightarrow\left(2x-1\right)\left(3x+2\right)=5\)
\(\Leftrightarrow6x^2+4x-3x-2-5=0\)
\(\Leftrightarrow6x^2+x-7=0\)
=>(6x+7)(x-1)=0
=>x=1 hoặc x=-7/6
\(\dfrac{2x}{x-3}+\dfrac{x}{x+3}=\dfrac{2x^2}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\)
\(\Leftrightarrow\dfrac{2x\left(x+3\right)+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x^2}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2x\left(x+3\right)+x\left(x-3\right)=2x^2\)
\(\Leftrightarrow2x^2+6x+x^2-3x-2x^2=0\)
\(\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=-3\left(l\right)\end{matrix}\right.\)
Vậy ............................
ĐKXĐ: x khác 3 và x khác -3
\(\dfrac{2x}{x-3}+\dfrac{x}{x+3}=\dfrac{2x^2}{x^2-9}\)
\(\Leftrightarrow\dfrac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x^2}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow2x^2+6x+x^2-3x=2x^2\)
\(\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy......