K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 11 2023

Lời giải:

\(P.\frac{1}{\sqrt{2}}=\frac{\sqrt{(x-1)+2\sqrt{x-1}+1}+\sqrt{(x-1)-2\sqrt{x-1}+1}}{\sqrt{(2x-1)+2\sqrt{2x-1}+1}-\sqrt{(2x-1)-2\sqrt{2x-1}+1}}\)

\(=\frac{\sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}}{\sqrt{(\sqrt{2x-1}+1)^2}-\sqrt{(\sqrt{2x-1}-1)^2}}\)

\(=\frac{\sqrt{x-1}+1+\sqrt{x-1}-1}{\sqrt{2x-1}+1-(\sqrt{2x-1}-1)}=\frac{2\sqrt{x-1}}{2}=\sqrt{x-1}\)

NV
11 tháng 1

Gọi thời gian làm riêng 1 mình xong con mương của đội (I) và (II) lần lượt là x và y (ngày) với x;y>0

Trong 1 ngày hai đội lần lượt đào được \(\dfrac{1}{x}\) và \(\dfrac{1}{y}\) phần con mương

Do hai đội dự định cùng đào xong trong 10 ngày nên:

\(10\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{10}\) (1)

Trong 6 ngày hai đội làm chung được: \(\dfrac{6}{10}=\dfrac{3}{5}\) phần con mương

Do đó trong 4 ngày còn lại đội 2 cần đào \(1-\dfrac{3}{5}=\dfrac{2}{5}\) phần con mương

Năng suất đội 2 gấp đôi đội (I) nên trong 4 ngày đó, mỗi ngày đội 2 đào được \(\dfrac{2}{x}\) phần con mương.

Ta có phương trình: \(4.\dfrac{2}{x}=\dfrac{2}{5}\Rightarrow x=20\)

Thế vào (1) \(\Rightarrow\dfrac{1}{20}+\dfrac{1}{y}=\dfrac{1}{10}\Rightarrow y=20\)

Vậy nếu làm riêng thì mỗi đội phải mất 20 ngày

31 tháng 1

loading...  giải giúp em câu 5 với ạ

23 tháng 11 2023

ĐKXĐ: \(\left\{{}\begin{matrix}5x^2+14x+9>=0\\x+1>=0\\x^2-x-20>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(x+1\right)\left(5x+9\right)>=0\\x+1>=0\\\left(x-5\right)\left(x+4\right)>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x< =-\dfrac{9}{5}\\x>=-1\end{matrix}\right.\\x>=-1\\\left[{}\begin{matrix}x>=5\\x< =-4\end{matrix}\right.\end{matrix}\right.\)

=>x>=5

\(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)

=>\(\sqrt{5x^2+14x+9}-21+6-\sqrt{x^2-x-20}=5\sqrt{x+1}-15\)

=>\(\dfrac{5x^2+14x+9-441}{\sqrt{5x^2+14x+9}+21}+\dfrac{36-x^2+x+20}{6+\sqrt{x^2-x-20}}=5\left(\sqrt{x+1}-3\right)\)

=>\(\dfrac{5x^2+14x-432}{\sqrt{5x^2+14x+9}+21}+\dfrac{-x^2+x+56}{6+\sqrt{x^2-x-20}}=5\cdot\dfrac{x+1-9}{\sqrt{x+1}+3}\)

=>\(\dfrac{\left(x-8\right)\left(5x+54\right)}{\sqrt{5x^2+14x+9}+21}-\dfrac{x^2-x-56}{\sqrt{x^2-x-20}+6}=\dfrac{5\left(x-8\right)}{\sqrt{x+1}+3}\)

=>\(\dfrac{\left(x-8\right)\left(5x+4\right)}{\sqrt{5x^2+14x+9}+21}-\dfrac{\left(x-8\right)\left(x+7\right)}{\sqrt{x^2-x-20}+6}-\dfrac{5\left(x-8\right)}{\sqrt{x+1}+3}=0\)

=>\(\left(x-8\right)\left(\dfrac{5x+4}{\sqrt{5x^2+14x+9}+21}-\dfrac{x+7}{\sqrt{x^2-x-20}+6}-\dfrac{5}{\sqrt{x+1}+3}\right)=0\)

=>x-8=0

=>x=8(nhận)

2:

1+cot^2a=1/sin^2a

=>1/sin^2a=1681/81

=>sin^2a=81/1681

=>sin a=9/41

=>cosa=40/41

tan a=1:40/9=9/40

26 tháng 10 2021

Câu 2: 

a: \(\sqrt{9x-9}+1=7\)

\(\Leftrightarrow3\sqrt{x-1}=6\)

\(\Leftrightarrow x-1=4\)

hay x=5

b: \(\sqrt{9x+27}-\dfrac{1}{4}\sqrt{16x+48}+\sqrt{x+3}=9\)

\(\Leftrightarrow\sqrt{x+3}=3\)

hay x=6

ĐKXĐ: \(x^2+5x+2>=0\)

=>\(\left[{}\begin{matrix}x>=\dfrac{-5+\sqrt{17}}{2}\\x< =\dfrac{-5-\sqrt{17}}{2}\end{matrix}\right.\)

\(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)

=>\(x^2+5x+4-3\sqrt{x^2+5x+2}-6=0\)

=>\(x^2+5x+2-3\sqrt{x^2+5x+2}-4=0\)(1)

Đặt \(\sqrt{x^2+5x+2}=a\)(a>=0)

Phương trình (1) trở thành:

\(a^2-3a-4=0\)

=>(a-4)(a+1)=0

=>\(\left[{}\begin{matrix}a=4\left(nhận\right)\\a=-1\left(loại\right)\end{matrix}\right.\)

=>\(x^2+5x+2=4^2=16\)

=>\(x^2+5x-14=0\)

=>\(\left(x+7\right)\left(x-2\right)=0\)

=>\(\left[{}\begin{matrix}x=-7\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)

9 tháng 5 2016

\(\Delta=\left(-1\right)^2-4.1.\left(-2\right)=9>0\Rightarrow\sqrt{\Delta}=3\)

Vậy PT có 2 nghiệm phân biệt: \(x_1=\frac{-\left(-1\right)+3}{2}=2;x_2=\frac{-\left(-1\right)-3}{2}=-1\)