Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giới hạn đến 2- thì là x nhỏ hơn 2, giới hạn đến 2+ thì là lớn hơn 2
Mà thật ra là bạn chỉ nên quan đến khi x tiến đến 2- hay 2+ khi có dấu căn hoặc là giá trị tuyệt đối thôi, còn trong những dạng này thì thay như bình thường. Mẫu bằng 0 thì xem trên tử, tử bằng 0 thì biến đổi hoặc tử khác 0 thì sẽ ra kết quả luôn
\(\lim\limits_{x\rightarrow2^-}\dfrac{3x^2+x-1}{2x^2-5x+2}\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow2^-}3x^2+x-1=3\cdot2^2+2-1=3\cdot4+1=13>0\\\lim\limits_{x\rightarrow2^-}2x^2-5x+2=2\cdot2^2-5\cdot2+2=0\\\end{matrix}\right.\)
Giới hạn 1 phía thì gần như bạn kia nói (mặc dù cuối cùng lại kết luận sai). Với \(x\rightarrow2^-\) thì đồng nghĩa \(x< 2\), nên khi đó nhìn lên khu vực xét dấu của \(2x^2-5x+2\) ta sẽ biết nó âm hay dương.
Nếu giới hạn \(x\rightarrow2\) mà tử, mẫu có cùng nhân tử \(x-2\) (nghĩa là rút gọn được) thì làm bình thường. Còn nếu chỉ có mẫu tiến tới 0, tử tiến tới 1 số khác 0 thì có thể kết luận ngay là giới hạn này ko tồn tại (ngoại trừ trường hợp dấu của mẫu số ko đổi khi x đi qua 2, ví dụ như \(\left(2x^2-5x+2\right)^2\) thì nó luôn dương, hoặc \(\left|2x^2-5x+2\right|\) cũng vậy)
Ví dụ cụ thể: \(\lim\limits_{x\rightarrow2^-}\dfrac{3x^2+x-1}{2x^2-5x+2}=-\infty\)
\(\lim\limits_{x\rightarrow2}\dfrac{3x^2+x-1}{2x^2-5x+2}\) không tồn tại.
\(\lim\limits_{x\rightarrow2}\dfrac{3x^2+x-1}{\left|2x^2-5x+2\right|}=+\infty\)
\(\lim\limits_{x\rightarrow2}\dfrac{3x^2+x-1}{-\left(2x^2-5x+2\right)^2}=-\infty\)
Theo định nghĩa về giới hạn tại 1 điểm: giới hạn tại 1 điểm chỉ tồn tại khi giới hạn trái và giới hạn phải tại đó bằng nhau.
Nghĩa là muốn \(\lim\limits_{x\rightarrow a}f\left(x\right)\) thì \(\lim\limits_{x\rightarrow a^+}f\left(x\right)=\lim\limits_{x\rightarrow a^-}f\left(x\right)\)
Trong ví dụ của em \(\lim\limits_{x\rightarrow2^-}f\left(x\right)=-\infty\) còn \(\lim\limits_{x\rightarrow2^+}f\left(x\right)=+\infty\)
Rõ ràng là \(-\infty\ne+\infty\) nên \(\lim\limits_{x\rightarrow2}\dfrac{3x^2+x-1}{2x^2-5x+2}\) ko tồn tại
Rất đơn giản, điểm \(A\left(1;-2\right)\) có \(x=1;y=-2\)
Do đó ảnh của nó qua phép biến hình \(f\) sẽ có tọa độ: \(\left\{{}\begin{matrix}x_{A'}=-x=-1\\y_{A'}=\dfrac{y}{2}=-1\end{matrix}\right.\)
\(\Rightarrow A'\left(-1;-1\right)\)
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x-2}+1}{\sqrt[]{x+3}-2}=\lim\limits_{x\rightarrow1}\dfrac{\left(\sqrt[3]{x-2}+1\right)\left(\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1\right)\left(\sqrt[]{x+3}+2\right)}{\left(\sqrt[]{x+3}-2\right)\left(\sqrt[]{x+3}+2\right)\left(\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(\sqrt[]{x+3}+2\right)}{\left(x-1\right)\left(\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\sqrt[]{x+3}+2}{\sqrt[3]{\left(x-2\right)^2}-\sqrt[3]{x-2}+1}\)
\(=\dfrac{\sqrt[]{1+3}+2}{\sqrt[3]{\left(1-2\right)^2}-\sqrt[3]{1-2}+1}=\dfrac{4}{3}\)
\(\lim\dfrac{3^n+2.6^n}{6^{n-1}+5.4^n}=\lim\dfrac{6^n\left[\left(\dfrac{3}{6}\right)^n+2\right]}{6^n\left[\dfrac{1}{6}+5\left(\dfrac{4}{6}\right)^n\right]}=\lim\dfrac{\left(\dfrac{3}{6}\right)^n+2}{\dfrac{1}{6}+5\left(\dfrac{4}{6}\right)^n}=\dfrac{0+2}{\dfrac{1}{6}+0}=12\)
\(\lim\left(\sqrt{n^2+9}-n\right)=\lim\dfrac{\left(\sqrt{n^2+9}-n\right)\left(\sqrt{n^2+9}+n\right)}{\sqrt{n^2+9}+n}=\lim\dfrac{9}{\sqrt{n^2+9}+n}\)
\(=\lim\dfrac{n\left(\dfrac{9}{n}\right)}{n\left(\sqrt{1+\dfrac{9}{n^2}}+1\right)}=\lim\dfrac{\dfrac{9}{n}}{\sqrt{1+\dfrac{9}{n^2}}+1}=\dfrac{0}{1+1}=0\)
\(\lim\dfrac{\sqrt{15+9n^2}-3}{5-n}=\lim\dfrac{n\sqrt{\dfrac{15}{n^2}+9}-3}{5-n}=\lim\dfrac{n\left(\sqrt{\dfrac{15}{n^2}+9}-\dfrac{3}{n}\right)}{n\left(\dfrac{5}{n}-1\right)}\)
\(=\lim\dfrac{\sqrt{\dfrac{15}{n^2}+9}-\dfrac{3}{n}}{\dfrac{5}{n}-1}=\dfrac{\sqrt{9}-0}{0-1}=-3\)
EG là đường trung bình tam giác MNP \(\Rightarrow\left\{{}\begin{matrix}EG||MN\\EG=\dfrac{1}{2}MN=x\end{matrix}\right.\)
FG là đường trung bình tam giác MPQ \(\Rightarrow\left\{{}\begin{matrix}FG=\dfrac{1}{2}PQ=x\sqrt{2}\\FG||PQ\end{matrix}\right.\)
\(\Rightarrow\widehat{\left(MN;PQ\right)}=\widehat{\left(EG;FG\right)}\)
\(cos\widehat{EGF}=\dfrac{EG^2+FG^2-EF^2}{2EG.FG}=-\dfrac{\sqrt{2}}{2}\Rightarrow\widehat{EGF}=135^0\)
\(\Rightarrow\widehat{\left(MN;PQ\right)}=180^0-135^0=45^0\)
a.
Công thức góc cơ bản: \(cos\left(a+k\pi\right)=\pm cosa\) ; \(sin\left(a+k2\pi\right)=sina\) ; \(cos\left(a+\dfrac{\pi}{2}\right)=-sina\)
Do đó pt tương đương:
\(2cosx+\dfrac{1}{3}cos^2x=\dfrac{8}{3}+sin2x-3sinx+\dfrac{1}{3}sin^2x\)
\(\Leftrightarrow6cosx+1-sin^2x=8+3sin2x-9sinx+sin^2x\)
\(\Leftrightarrow2sin^2x-9sinx+7+6sinx.cosx-6cosx=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(2sinx-7\right)+6cosx\left(sinx-1\right)=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(2sinx+6cosx-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\\2sinx+6cosx=7\left(1\right)\end{matrix}\right.\)
Xét (1), ta có \(2^2+6^2=40< 7^2\) nên (1) vô nghiệm
Vậy họ nghiệm của pt là \(x=\dfrac{\pi}{2}+k2\pi\)
b.
Ta có:
\(tan^2x\left(1-sin^3x\right)+cos^3x-1=0\)
\(\Leftrightarrow\dfrac{\left(1-cos^2x\right)\left(1-sin^3x\right)}{\left(1-sin^2x\right)}-\left(1-cos^3x\right)=0\)
\(\Leftrightarrow\dfrac{\left(1-cosx\right)\left(1+cosx\right)\left(1+sinx+sin^2x\right)}{1+sinx}-\left(1-cosx\right)\left(1+cosx+cos^2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\Rightarrow x=k2\pi\\\dfrac{\left(1+cosx\right)\left(1+sinx+sin^2x\right)}{1+sinx}=1+cosx+cos^2x\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow\left(1+cosx\right)\left(1+sinx+sin^2x\right)=\left(1+sinx\right)\left(1+cosx+cos^2x\right)\)
\(\Leftrightarrow sin^2x+sin^2x.cosx=cos^2x+cos^2x.sinx\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx+cosx\right)+sinx.cosx\left(sinx-cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\Rightarrow x=\dfrac{\pi}{4}+k\pi\\sinx+cosx+sinx.cosx=0\left(2\right)\end{matrix}\right.\)
Xét (2), đặt \(sinx+cosx=t\Rightarrow\left|t\right|\le\sqrt{2}\)
\(sinx.cosx=\dfrac{t^2-1}{2}\)
Pt (2) trở thành:
\(t+\dfrac{t^2-1}{2}=0\Leftrightarrow t^2+2t-1=0\Rightarrow\left[{}\begin{matrix}t=-1+\sqrt{2}\\t=-1-\sqrt{2}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=\sqrt{2}-1\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}-1}{\sqrt{2}}\)
\(\Rightarrow...\)