Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2\left(x+2a\right)-\left(a+1\right)^2\left(x+2a\right)=0\)
\(\Leftrightarrow\left(x+2a\right)\left[x^2-\left(a+1\right)^2\right]=0\)
\(\Leftrightarrow\left(x+2a\right)\left(x+a+1\right)\left(x-a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2a\\x=-a-1\\x=a+1\end{matrix}\right.\)
Pt đã cho luôn có 3 nghiệm (như trên) với mọi a
\(\left\{{}\begin{matrix}-a-1-\left(-2a\right)=a-1< 0\\\left(-a-1\right)-\left(a+1\right)=-2\left(a+1\right)< 0\\\end{matrix}\right.\)
\(\Rightarrow x=-a-1\) là nghiệm nhỏ nhất
2x+4<a2 -ax
2x-ax<a2 -4
(2-a)x<(a--2)(a+2)
-(2-a)x >(2-a)(2+a)
-x>2+a
=> x<-(2+a)
\(\Leftrightarrow2x+4+ax-a^2<0\)
\(\Leftrightarrow\left(2+a\right)x<\left(a-2\right)\left(a+2\right)\)
nếu a=-2=> vô nghiệm
nếu a<-2=>x>(a-2)
nếu a>-2=> x<(a-2)
a)x(x+3)+a(x-3)=2(ax-1)
=>x2+3x+ax-3a=2ax-2
=>x2+3x+ax-3a-2ax=-2
=>x2+3x-ax-3a = -2
=> (x2+3x)-(ax+3a)=-2
=>x(x+3)-a(x+3)=-2
=>(x+3)(x-a)=-2
=>x+3và x-a\(\in\)U(-2)
x+3=>x | x-a=>a | |
-2 | x=-5 |
a=-6 |
-1 | x=-4 | a=-6 |
1 | x=-2 | a=0 |
-2 | x=-1 | a=-3 |
vậy S={-5;-4;-2;-1}lần lượt tương ứng với a\(\in\){-6(hai lân);0;-3}
a. \(m-2\ge\left(2m-1\right)x-3\Leftrightarrow m+1\ge\left(2m-1\right)x\)
Với \(2m-1=0\Rightarrow m=\frac{1}{2},bpt\Leftrightarrow\frac{3}{2}\ge0\) đúng với mọi x.
Với \(2m-1>0\Rightarrow m>\frac{1}{2},bpt\Leftrightarrow x\le\frac{m+1}{2m-1}\)
Với \(2m-1< 0\Rightarrow m< \frac{1}{2},bpt\Leftrightarrow x\ge\frac{m+1}{2m-1}\)
Với \(m>\frac{1}{2},\) S = ( \(-\infty;\frac{m+1}{2m-1}\)]
Vậy với \(m=\frac{1}{2}\Rightarrow S=R.\)
Với \(m< \frac{1}{2},\)S = [ \(\frac{m+1}{2m-1};+\infty\))
b. \(bpt\Leftrightarrow\frac{\left(ax+1\right)\left(a+1\right)-\left(ax-1\right)\left(a-1\right)}{a^2-1}>0\)
\(\Leftrightarrow\frac{2ax+2a}{a^2-1}>0\)
Với a > 1 thì \(a^2-1>0\Rightarrow ax+a>0\Rightarrow x+1>0\Rightarrow x>-1\forall a>1\)
Vậy với a > 1 thì bpt luôn có tập nghiệm \(S=\left(-1;+\infty\right)\)
Áp dụng bất đẳng thức giá trị tuyệt đối \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra khi \(ab\ge0\) ta có :
\(\left|x-3\right|+\left|5-x\right|\ge\left|x-3+5-x\right|=\left|2\right|=2\)
Dấu "=" xảy ra khi \(\left(x-3\right)\left(5-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-3\ge0\\5-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le5\end{cases}}}\)
\(\Rightarrow\)\(3\le x\le5\)
Trường hợp 2 :
\(\hept{\begin{cases}x-3\le0\\5-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge5\end{cases}}}\) ( loại )
Do đó :
\(2a=2\) \(\Rightarrow\) \(a=\frac{2}{2}=1\)
Vậy \(a=1\) khi \(3\le x\le5\)
Chúc bạn học tốt ~
=>a^2*x+a-ax-2x-2=0
=>x(a^2-a-2)+(a-2)=0
=>x(a-2)(a+1)+(a-2)=0
Nếu a=2 thì phương trình có vô số nghiệm
Nếu a=-1 thì ptvn
Nếu a<>2; a<>-1 thì pt có nghiệm duy nhất là x=-a-1