K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>a^2*x+a-ax-2x-2=0

=>x(a^2-a-2)+(a-2)=0

=>x(a-2)(a+1)+(a-2)=0

Nếu a=2 thì phương trình có vô số nghiệm

Nếu a=-1 thì ptvn

Nếu a<>2; a<>-1 thì pt có nghiệm duy nhất là x=-a-1

NV
23 tháng 1 2021

\(x^2\left(x+2a\right)-\left(a+1\right)^2\left(x+2a\right)=0\)

\(\Leftrightarrow\left(x+2a\right)\left[x^2-\left(a+1\right)^2\right]=0\)

\(\Leftrightarrow\left(x+2a\right)\left(x+a+1\right)\left(x-a-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2a\\x=-a-1\\x=a+1\end{matrix}\right.\) 

Pt đã cho luôn có 3 nghiệm (như trên) với mọi a

\(\left\{{}\begin{matrix}-a-1-\left(-2a\right)=a-1< 0\\\left(-a-1\right)-\left(a+1\right)=-2\left(a+1\right)< 0\\\end{matrix}\right.\)

\(\Rightarrow x=-a-1\) là nghiệm nhỏ nhất

22 tháng 12 2016

2x+4<a2 -ax

2x-ax<a2 -4

(2-a)x<(a--2)(a+2)

-(2-a)x >(2-a)(2+a)

-x>2+a

=> x<-(2+a)

22 tháng 12 2016

\(\Leftrightarrow2x+4+ax-a^2<0\)

\(\Leftrightarrow\left(2+a\right)x<\left(a-2\right)\left(a+2\right)\)

nếu a=-2=> vô nghiệm

nếu a<-2=>x>(a-2)

nếu a>-2=> x<(a-2)

4 tháng 1 2018

a)x(x+3)+a(x-3)=2(ax-1)

=>x2+3x+ax-3a=2ax-2

=>x2+3x+ax-3a-2ax=-2

=>x2+3x-ax-3a = -2

=> (x2+3x)-(ax+3a)=-2

=>x(x+3)-a(x+3)=-2

=>(x+3)(x-a)=-2

=>x+3và x-a\(\in\)U(-2)

x+3=>x x-a=>a
-2 x=-5

a=-6

-1 x=-4 a=-6
1 x=-2 a=0
-2 x=-1 a=-3

vậy S={-5;-4;-2;-1}lần lượt tương ứng với a\(\in\){-6(hai lân);0;-3}

12 tháng 2 2017

Quy đồng lên, lấy MTC là (a-b)(b-c)(a-c)

9 tháng 5 2017

a. \(m-2\ge\left(2m-1\right)x-3\Leftrightarrow m+1\ge\left(2m-1\right)x\)

Với \(2m-1=0\Rightarrow m=\frac{1}{2},bpt\Leftrightarrow\frac{3}{2}\ge0\) đúng với mọi x.

Với \(2m-1>0\Rightarrow m>\frac{1}{2},bpt\Leftrightarrow x\le\frac{m+1}{2m-1}\)

Với \(2m-1< 0\Rightarrow m< \frac{1}{2},bpt\Leftrightarrow x\ge\frac{m+1}{2m-1}\)

Với \(m>\frac{1}{2},\) S = ( \(-\infty;\frac{m+1}{2m-1}\)]

Vậy với \(m=\frac{1}{2}\Rightarrow S=R.\)

Với \(m< \frac{1}{2},\)S = [ \(\frac{m+1}{2m-1};+\infty\))

b. \(bpt\Leftrightarrow\frac{\left(ax+1\right)\left(a+1\right)-\left(ax-1\right)\left(a-1\right)}{a^2-1}>0\)

\(\Leftrightarrow\frac{2ax+2a}{a^2-1}>0\)

Với a > 1 thì \(a^2-1>0\Rightarrow ax+a>0\Rightarrow x+1>0\Rightarrow x>-1\forall a>1\)

Vậy với a > 1 thì bpt luôn có tập nghiệm \(S=\left(-1;+\infty\right)\)

9 tháng 4 2018

Áp dụng bất đẳng thức giá trị tuyệt đối \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra khi \(ab\ge0\) ta có : 

\(\left|x-3\right|+\left|5-x\right|\ge\left|x-3+5-x\right|=\left|2\right|=2\)

Dấu "=" xảy ra khi \(\left(x-3\right)\left(5-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x-3\ge0\\5-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le5\end{cases}}}\)

\(\Rightarrow\)\(3\le x\le5\)

Trường hợp 2 : 

\(\hept{\begin{cases}x-3\le0\\5-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge5\end{cases}}}\) ( loại ) 

Do đó : 

\(2a=2\) \(\Rightarrow\) \(a=\frac{2}{2}=1\)

Vậy \(a=1\)  khi \(3\le x\le5\)

Chúc bạn học tốt ~