K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2020

a) \(x^3-6x^2-9x+14=0\)

\(\Leftrightarrow x^3-8x^2+2x^2+7x-16x+14=0\)

\(\Leftrightarrow\left(x^3-8x^2+7x\right)+\left(2x^2-16x+14\right)=0\)

\(\Leftrightarrow x\left(x^2-8x+7\right)+2\left(x^2-8x+7\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-8x+7\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-7x-x+7\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x-7\right)-\left(x-7\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x-7\right)=0\)

\(\Leftrightarrow x\in\left\{-2;1;7\right\}\)

AH
Akai Haruma
Giáo viên
12 tháng 1 2020

Lời giải:

a)

$x^3-6x^2-9x+14=0$

$\Leftrightarrow x^3-x^2-5x^2+5x-14x+14=0$

$\Leftrightarrow x^2(x-1)-5x(x-1)-14(x-1)=0$

$\Leftrightarrow (x-1)(x^2-5x-14)=0$

$\Leftrightarrow (x-1)(x^2-7x+2x-14)=0$

$\Leftrightarrow (x-1)[x(x-7)+2(x-7)]=0$

$\Leftrightarrow (x-1)(x+2)(x-7)=0$

$\Rightarrow x=1; x=-2$ hoặc $x=7$

b)

Bạn tham khảo tại đây:

Câu hỏi của Lương Đức Hưng - Toán lớp 8 | Học trực tuyến

ai bít thì giúp mình với nhé

\(a,\frac{15-x}{2000}+\frac{14-x}{2001}=\frac{13-x}{2002}+\frac{12-x}{2003}\)

\(\Leftrightarrow\frac{15-x}{2000}+1+\frac{14-x}{2001}+1=\frac{13-x}{2002}+1+\frac{12-x}{2003}+1\)

\(\Leftrightarrow\frac{15-x+2000}{2000}+\frac{14-x+2001}{2001}=\frac{13-x+2002}{2002}+\frac{12-x+2003}{2003}\)

\(\Leftrightarrow\frac{2015-x}{2000}+\frac{2015-x}{2001}=\frac{2015}{2002}+\frac{2015-x}{2003}\)

\(\Leftrightarrow\left(2015-x\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}>0\)

\(\Leftrightarrow2015-x=0\)

\(\Leftrightarrow x=2015\)

KL : PT có nghiệm \(S=\left\{2015\right\}\)

14 tháng 7 2017

1. \(\left(2x-1\right)^3+\left(x+2\right)^3=\left(3x+1\right)^3\)

\(\Rightarrow8x^3-12x^2+6x-1+x^3+6x^2+12x+8=27x^3+27x^2+9x+1\)

\(\Rightarrow-18x^3-33x^2+9x+6=0\)\(\Rightarrow\left(x+2\right)\left(-18x^2+3x+3\right)=0\)

\(\Rightarrow\left(x+2\right)\left(2x-1\right)\left(-9x-3\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2};x=-\frac{1}{3}\end{cases}}\)

Vậy \(x=-2;x=\frac{1}{2};x=-\frac{1}{3}\)

2. \(\frac{x-1988}{15}+\frac{x-1969}{17}+\frac{x-1946}{19}+\frac{x-1919}{21}=10\)

\(\Rightarrow\left(\frac{x-1988}{15}-1\right)+\left(\frac{x-1969}{17}-2\right)+\left(\frac{x-1946}{19}-3\right)+\left(\frac{x-1919}{21}-4\right)=0\)

\(\Rightarrow\frac{x-2003}{15}+\frac{x-2003}{17}+\frac{x-2003}{19}+\frac{x-2003}{21}=0\)

\(\Rightarrow x-2003=0\)do \(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\ne0\)

Vậy \(x=2003\)

3. Đặt \(\hept{\begin{cases}2009-x=a\\x-2010=b\end{cases}}\)

\(\Rightarrow\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\Rightarrow49a^2+49ab+49b^2=19a^2-19ab+19b^2\)

\(\Rightarrow30a^2+68ab+30b^2=0\Rightarrow\left(5a+3b\right)\left(3a+5b\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5a=-3b\\3a=-5b\end{cases}}\)

Với \(5a=-3b\Rightarrow5\left(2009-x\right)=-3\left(x-2010\right)\)

\(\Rightarrow-2x=-4015\Rightarrow x=\frac{4015}{2}\)

Với \(3a=-5b\Rightarrow3\left(2009-x\right)=-5\left(x-2010\right)\)

\(\Rightarrow2x=4023\Rightarrow x=\frac{4023}{2}\)

Vậy \(x=\frac{4023}{2}\)hoặc \(x=\frac{4015}{2}\)

30 tháng 4 2019

Đặt \(2009-x=t\Rightarrow x-2010=-\left(2009-x\right)-1=-t-1\)

Suy ra:

\(\frac{t^2+t\left(-t-1\right)+\left(-t-1\right)^2}{t^2-t\left(-t-1\right)+\left(-t-1\right)^2}=\frac{19}{49}\)

\(\Leftrightarrow\frac{t^2-t\left(t+1\right)+\left(t+1\right)^2}{t^2+t\left(t+1\right)+\left(t+1\right)^2}=\frac{19}{49}\)

\(\Leftrightarrow\frac{t^2-t^2-t+t^2+2t+1}{t^2+t^2+t+t^2+2t+1}=\frac{19}{49}\)

\(\Leftrightarrow\frac{t^2+t+1}{3t^2+3t+1}=\frac{19}{49}\)

\(\Leftrightarrow49t^2+49t+49=57t^2+57t+19\)

\(\Leftrightarrow8t^2+8t-30=0\)

\(\Leftrightarrow4t^2+4t-15=0\Leftrightarrow4t^2+4t+1=16\)

\(\Leftrightarrow\left(2t+1\right)^2=16\Leftrightarrow\left[{}\begin{matrix}2t+1=-4\\2t+1=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2t=-5\\2t=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=-\frac{5}{2}\\t=\frac{3}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2009-x=-\frac{5}{2}\\2009-x=\frac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{4023}{2}\\x=\frac{4015}{2}\end{matrix}\right.\)

Vậy \(S=\left\{\frac{4015}{2};\frac{4023}{2}\right\}\)

15 tháng 8 2018

Ta có :

\(\left|x-2010\right|\ge0\)

và \(\left(y+2011\right)^{2010}\ge0\)

Dấu " =" xảy ra khi \(\hept{\begin{cases}\left|x-2010\right|=0\\\left(y+2011\right)^{2010}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-2010=0\\y+2011=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2010\\y=-2011\end{cases}}\)

Vậy GTNN của A xảy ra khi 

\(\hept{\begin{cases}x=2010\\y=-2011\end{cases}}\)

.....

25 tháng 3 2017

khó quá đi

Khó quá, ai mà biết được?!

21 tháng 2 2018

Đặt \(x-2009=y\) khi đó phương trình trở thành:
\(\dfrac{y^2-y\left(y-1\right)+\left(y-1\right)^2}{y^2+y\left(y-1\right)+\left(y-1\right)^2}=\dfrac{19}{49}\)

\(\Leftrightarrow4y^2-4y-15=0\)

\(\Leftrightarrow\left(2y-5\right)\left(2y+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2,5\\y=-1,5\end{matrix}\right.\)

Đổi lại:\(y=x-2009\) ,ta được:

\(\left[{}\begin{matrix}x=2009+2,5=2011,5\\x=2009-1,5=2007,5\end{matrix}\right.\)

Vậy...

21 tháng 2 2018

Cre:Miny.vn