Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,PT\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}=3\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=3\)
\(\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\Leftrightarrow x=17\)
Vậy............................................
\(b,PT\Leftrightarrow\sqrt{\left(x^2-1\right)^2}=x-1\)
\(\Leftrightarrow x^2-1=x-1\Leftrightarrow x^2=x\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy...............................................
a/ \(\sqrt{x^2-6x+9}=\sqrt{6-2\sqrt{5}}\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(\Leftrightarrow|x-3|=\sqrt{5}-1\)
Làm nốt
b/ \(\sqrt{9x^2-6x+1}-3\sqrt{\frac{7-4\sqrt{3}}{9}}=0\)
\(\Leftrightarrow\sqrt{\left(3x-1\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(\Leftrightarrow|3x-1|=2-\sqrt{3}\)
Làm nốt
c/ \(\sqrt{2x^2-4x+2}-\sqrt{3-\sqrt{5}}=0\)
\(\Leftrightarrow\sqrt{4x^2-8x+4}-\sqrt{6-2\sqrt{5}}=0\)
\(\Leftrightarrow\sqrt{\left(2x-2\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}=0\)
\(\Leftrightarrow|2x-2|=\sqrt{5}-1\)
Làm nốt
a,\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}\) \(^2\)\(=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x+3\right)}+x-3=0\)
\(\Leftrightarrow\)\(x=3\)
b, \(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow\)\(x-1+x-2=3\)
\(\Leftrightarrow\)\(2x=6\)
\(\Leftrightarrow\)\(x=3\)
Nhớ k nhé
a/ ĐK: \(x \ge -1\). Đặt \(\sqrt{x+1}=a \ge 0\)
PT: \(\Leftrightarrow6a-3a-2a=5\)
\(\Leftrightarrow a=5\)
\(\Leftrightarrow x+1=15\Leftrightarrow x=24\) (nhận)
b,c: Hai ý này đều làm theo cách bình phương hoặc đưa về phương trình chứa dấu giá trị tuyệt đối được nhé.
b) Cách 1: ĐKXĐ: Tự tìm
\(\sqrt{x^{2}-4x+4}=2\Leftrightarrow x^{2}-4x+4=4\Leftrightarrow x(x-4)=0\)
\(\Leftrightarrow x=0\) hoặc \(x=4\) cả 2 cái này đều TMĐK
Cách 2: \((\sqrt{x^2-4x+4}=2)\)
\(\Leftrightarrow \sqrt{(x-2)^2}=2\)
\(\Leftrightarrow \mid x-2\mid=2\)
Với \(x\geq 2\) thì :
\(x-2=2 \Leftrightarrow x=4\) (nhận)
Với \(x<2\) thì
\(-x-2=2\Leftrightarrow x=0\) (nhận)
Vậy \(S={0;4}\)
c) Cách 1: \(\sqrt{x^{2}-6x+9}=x-2\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x^{2}-6x+9=x^{2}-4x+4 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x=\frac{5}{2} \end{matrix}\right.\)
Nghiệm TMĐK
Cách 2: \((\sqrt{x^2-6x+9}=x-2)\)
\(\Leftrightarrow \mid x-3\mid =x-2\)
Với \(x\geq 3\) thì
\(x-3=x-2\Leftrightarrow 0x=-1\) ( vô lý)
Với \(x<3\) thì
\(-x+3=x-2\Leftrightarrow -2x=-5 \Leftrightarrow x=\frac{5}{2}\)
Vậy \(S={\frac{5}{2}}\)
d) ĐKXĐ: Tự tìm
\(\sqrt{x^{2}+4}=\sqrt{2x+3}\Leftrightarrow x^{2}+4=2x+3\Leftrightarrow x^{2}-2x+1=0\Leftrightarrow (x-1)^{2}=0\)
\(\Leftrightarrow x=1\)
e) ĐKXĐ: \(x\geq \frac{3}{2}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow \frac{2x-3}{x-1}=4\Rightarrow 2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)
Nghiệm không TMĐK.
Phương trình vô nghiệm.
f) ĐKXĐ: \(x\geq \frac{-15}{2}\)
\(x+\sqrt{2x+15}=0\Leftrightarrow 2x+2\sqrt{2x+15}=0\Leftrightarrow 2x+15+2\sqrt{2x+15}+1-16=0\)
\(\Leftrightarrow (\sqrt{2x+15}+1)^{2}-4^{2}=0\Leftrightarrow (\sqrt{2x+15}+5)(\sqrt{2x+15}-3)=0\)
\(\Leftrightarrow \sqrt{2x+15}-3=0\Leftrightarrow \sqrt{2x+15}=3\Leftrightarrow 2x+15=9\Leftrightarrow x=-3\) (TMĐK)
a) \(\sqrt{x^2-6x+9}+x=11\)
\(\Rightarrow\sqrt{\left(x-3\right)^2}+x=11\)
\(\Rightarrow x-3+x=11\)
\(\Rightarrow2x=14\Rightarrow x=7\)
Vậy........
b) \(\sqrt{3x^2-4x+3}=1-2x\)
\(3x^2-4x+3=1-4x+4x^2\)
\(3x^2-4x^2-4x+4x=-2\)
\(-x^2=-2\)
\(2=x^2\Rightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
Vậy.........
d) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)
\(\Rightarrow2x-1=x-3\)
\(\Rightarrow x=1-3\)
\(\Rightarrow x=-2\)
Vậy x=-2
a, \(x-3\sqrt{x}+2=0\Leftrightarrow x-2\sqrt{x}-\sqrt{x}+2=0\)đk : x >= 0
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)=0\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\Leftrightarrow x=1;x=4\)
b, \(\sqrt{x^2-1}-\sqrt{x+1}=0\Leftrightarrow\sqrt{\left(x-1\right)\left(x+1\right)}-\sqrt{x+1}=0\)đk : \(x\ge1\)
\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{x-1}-1\right)=0\)
TH1 : \(x=-1\)( loại )
TH2 : \(\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\)
c, \(x^2+4x+4-\sqrt{2x+1}-\left(x-1\right)^2=0\)đk : x>= -1/2
\(\Leftrightarrow\left(x+2\right)^2-\left(x-1\right)^2-\sqrt{2x+1}=0\)
\(\Leftrightarrow3\left(2x+1\right)-\sqrt{2x+1}=0\Leftrightarrow\sqrt{2x+1}\left(3\sqrt{2x+1}-1\right)=0\)
TH1 : \(x=-\frac{1}{2}\)
TH2 : \(\sqrt{2x+1}=\frac{1}{3}\Leftrightarrow2x+1=\frac{1}{9}\Leftrightarrow x=\frac{\frac{1}{9}-1}{2}=\frac{-\frac{8}{9}}{2}=-\frac{4}{9}\)
a) ĐK : x \(\ge0\)
\(x-3\sqrt{x}+2=0\)
<=> \(\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
<=> \(\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)(tm)
b) ĐK \(\hept{\begin{cases}x\ge-1\\x\notin\left\{x\in R|-1< x< 0\right\}\end{cases}}\)
\(\sqrt{x^2-1}-\sqrt{x+1}=0\)
<=> \(\sqrt{x-1}\sqrt{x+1}-\sqrt{x+1}=0\)
<=> \(\sqrt{x-1}\left(\sqrt{x+1}-1\right)=0\)
<=> \(\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x-1}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)(tm)
c) ĐK : \(x\ge-\frac{1}{2}\)
\(x^2+4x+4-\sqrt{2x+1}-\left(x-1\right)^2=0\)
<=> \(6x+3-\sqrt{2x+1}=0\)
<=> \(\sqrt{2x+1}\left(3\sqrt{2x+1}-1\right)=0\)
<=> \(\orbr{\begin{cases}\sqrt{2x+1}=0\\3\sqrt{2x+1}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=-\frac{4}{9}\end{cases}}\)(tm)
Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.
b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)
Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)
Dấu = xảy ra khi \(x=2\)
c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)
\(\le1+\sqrt{3}\)
Dấu = không xảy ra nên pt vô nghiệm
Câu d làm tương tự
\(a,\sqrt{x^2-4}-x^2+4=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow x^2-4=\left(x-4\right)^2\)
\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)
\(\Leftrightarrow-x^4-7x^2-20=0\)
\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\)
\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\)
\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\)
\(\Rightarrow\)pt vô nghiệm
\(\sqrt{25x^2-10x+1}=4x+9\)
\(\Leftrightarrow\sqrt{\left(5x-1\right)^2}=4x+9\)
\(\Leftrightarrow\left|5x-1\right|=4x+9\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=4x+9\\5x-1=-4x-9\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-\frac{8}{9}\end{cases}}}\)
Vậy ...
\(\sqrt{x^2+2x+1}=\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)^2}-\sqrt{x+1}=0\)
\(\Leftrightarrow\sqrt{x+1}.\left(\sqrt{x+1}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x+1}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}}\)
Vậy ...
a: \(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=1\end{matrix}\right.\Leftrightarrow x=\dfrac{3}{2}\)
\(a,ĐK:x\ge\dfrac{3}{2}\\ PT\Leftrightarrow\sqrt{2x-3}\left(\sqrt{2x+3}-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=0\\\sqrt{2x+3}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\left(tm\right)\\x=-1\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{3}{2}\)
\(b,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}\left(\sqrt{x+1}-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=0\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=1\)