Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x2−2x+m=tx2−2x+m=t, phương trình trở thành t2−2t+m=xt2−2t+m=x
Ta có hệ {x2−2x+m=tt2−2t+m=x{x2−2x+m=tt2−2t+m=x
⇒(x−t)(x+t−1)=0⇒(x−t)(x+t−1)=0
⇔[x=tx=1−t⇔[x=tx=1−t
⇔[x=x2−2x+mx=1−x2+2x−m⇔[x=x2−2x+mx=1−x2+2x−m
⇔[m=−x2+3xm=−x2+x+1⇔[m=−x2+3xm=−x2+x+1
Phương trình hoành độ giao điểm của y=−x2+x+1y=−x2+x+1 và y=−x2+3xy=−x2+3x:
−x2+x+1=−x2+3x−x2+x+1=−x2+3x
⇔x=12⇒y=54⇔x=12⇒y=54
Đồ thị hàm số y=−x2+3xy=−x2+3x và y=−x2+x+1y=−x2+x+1:
a) \(2{x^2} + 3x + 1 \ge 0\)
Tam thức bậc hai \(f\left( x \right) = 2{x^2} + 3x + 1\) có 2 nghiệm phân biệt \(x = - 1,x = \frac{{ - 1}}{2}\)
hệ số \(a = 2 > 0\)
Ta có bảng xét dấu f(x) như sau:
Từ bảng xét dấu ta thấy \(f\left( x \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \le - 1\\x \ge - \frac{1}{2}\end{array} \right.\)
Vậy tập nghiệm của bất phương trình là \(\left( { - \infty ; - 1} \right] \cup \left[ { - \frac{1}{2}; + \infty } \right)\)
b) \( - 3{x^2} + x + 1 > 0\)
Tam thức bậc hai \(f\left( x \right) = - 3{x^2} + x + 1\) có 2 nghiệm phân biệt \(x = \frac{{1 - \sqrt {13} }}{6},x = \frac{{1 + \sqrt {13} }}{6}\)
Hệ số \(a = - 3 < 0\)
Ta có bảng xét dấu f(x) như sau:
Từ bảng xét dấu ta thấy \(f\left( x \right) > 0\)\( \Leftrightarrow \frac{{1 - \sqrt {13} }}{6} < x < \frac{{1 + \sqrt {13} }}{6}\)
Vậy tập nghiệm của bất phương trình là \(\left( {\frac{{1 - \sqrt {13} }}{6};\frac{{1 + \sqrt {13} }}{6}} \right)\)
c) \(4{x^2} + 4x + 1 \ge 0\)
Tam thức bậc hai \(f\left( x \right) = 4{x^2} + 4x + 1\) có nghiệm duy nhất \(x = \frac{{ - 1}}{2}\)
hệ số \(a = 4 > 0\)
Ta có bảng xét dấu f(x) như sau:
Từ bảng xét dấu ta thấy \(f\left( x \right) \ge 0 \Leftrightarrow x \in \mathbb{R}\)
Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\)
d) \( - 16{x^2} + 8x - 1 < 0\)
Tam thức bậc hai \(f\left( x \right) = - 16{x^2} + 8x - 1\) có nghiệm duy nhất \(x = \frac{1}{4}\)
hệ số \(a = - 16 < 0\)
Ta có bảng xét dấu f(x) như sau:
Từ bảng xét dấu ta thấy \(f\left( x \right) < 0 \Leftrightarrow x \ne \frac{1}{4}\)
Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\backslash \left\{ {\frac{1}{4}} \right\}\)
e) \(2{x^2} + x + 3 < 0\)
Ta có \(\Delta = {1^2} - 4.2.3 = - 23 < 0\) và có \(a = 2 > 0\)
Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(2{x^2} + x + 3\) mang dấu “-” là \(\emptyset \)
Vậy tập nghiệm của bất phương trình \(2{x^2} + x + 3 < 0\) là \(\emptyset \)
g) \( - 3{x^2} + 4x - 5 < 0\)
Tam thức bậc hai \(f\left( x \right) = - 3{x^2} + 4x - 5\) có \(\Delta ' = {2^2} - \left( { - 3} \right).\left( { - 5} \right) = - 11 < 0\) và có \(a = - 3 < 0\)
Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - 3{x^2} + 4x - 5\) mang dấu “-” là \(\mathbb{R}\)
Vậy tập nghiệm của bất phương trình \( - 3{x^2} + 4x - 5 < 0\) là \(\mathbb{R}\)
Đáp án: D
(x2 - 4) (x2 - 1) = 0 ⇔ x = ±2; x = ±1 nên A = {-2; -1; 1; 2}
(x2 - 4) (x2 + 1) = 0 ⇔ x2 - 4 = 0 ⇔ x = ±2 nên B = {-2; 2}
x4 - 5x2 + 4)/x = 0 ⇔ x4 - 5x2 + 4 = 0 ⇔ x = ±2; x = ±1 nên D = {-2; -1; 1; 2}
=> A = D
1.
Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)
Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)
\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)
Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):
\(-x^2+x+1=-x^2+3x\)
\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)
Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\):
Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)
Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)
Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ
Để pt có 2 nghiệm dương (ko yêu cầu pb?) \(\left\{{}\begin{matrix}a\ne0\\\Delta\ge0\\x_1+x_2=-\frac{b}{a}>0\\x_1x_2=\frac{c}{a}>0\end{matrix}\right.\)
a/ \(\left\{{}\begin{matrix}\Delta=\left(2m-1\right)^2+4m-4\ge0\\x_1+x_2=2m+1>0\\x_1x_2=-m+1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-3\ge0\\m>-\frac{1}{2}\\m< 1\end{matrix}\right.\) \(\Rightarrow\frac{\sqrt{3}}{2}\le m< 1\)
b/ \(\left\{{}\begin{matrix}\Delta=\left(m+2\right)^2-4\left(-2m+1\right)\ge0\\-m-2>0\\-2m+1>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+12m\ge0\\m< -2\\m< \frac{1}{2}\end{matrix}\right.\) \(\Rightarrow m\le-12\)
e/
\(\left\{{}\begin{matrix}\Delta=\left(m+1\right)^2-4m\ge0\\x_1+x_2=m+1>0\\x_1x_2=m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)^2\ge0\\m>-1\\m>0\end{matrix}\right.\) \(\Rightarrow m>0\)
f/
\(\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)\ge0\\x_1+x_2=\frac{2\left(3-2m\right)}{m-2}>0\\x_1x_2=\frac{5m-6}{m-2}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\-m^2+4m-3\ge0\\\frac{3-2m}{m-2}>0\\\frac{5m-6}{m-2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\1\le m\le3\\\frac{3}{2}< m< 2\\\left[{}\begin{matrix}m< \frac{6}{5}\\m>2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
Bài 1:
a: \(\Leftrightarrow x^2-5x+6< =0\)
=>(x-2)(x-3)<=0
=>2<=x<=3
b: \(\Leftrightarrow\left(x-6\right)^2< =0\)
=>x=6
c: \(\Leftrightarrow x^2-2x+1>=0\)
\(\Leftrightarrow\left(x-1\right)^2>=0\)
hay \(x\in R\)
Lời giải:
Đặt $x^2=t$ thì PT ban đầu trở thành: \(t^2-2mt+4=0(*)\)
\(\Delta'_{(*)}=m^2-4\)
a)
Để PT ban đầu vô nghiệm thì PT $(*)$ vô nghiệm hoặc có 2 nghiệm âm
PT $(*)$ vô nghiệm \(\Leftrightarrow \Delta'_{(*)}=m^2-4< 0\Leftrightarrow -2< m< 2\)
PT $(*)$ có nghiệm âm: \(\Leftrightarrow \left\{\begin{matrix} \Delta'_{(*)}=m^2-4>0\\ t_1+t_2=2m< 0\\ t_1t_2=4>0\end{matrix}\right.\Leftrightarrow m< -2\)
Vậy $m\in (-2;2)$ hoặc $m\in (-\infty; -2)$
b)
Để PT ban đầu có 1 nghiệm thì PT $(*)$ có duy nhất nghiệm $t=0$ hoặc có 1 nghiệm $t=0$ và nghiệm còn lại âm.
Mà $0^2-2.m.0+4=4\neq 0$ với mọi $m$ nên PT $(*)$ không thể có nghiệm $t=0$. Kéo theo không tồn tại $m$ để PT ban đầu có nghiệm duy nhất.
c) Để PT ban đầu có 2 nghiệm thì PT $(*)$ có 1 nghiệm dương, 1 nghiệm âm (2 nghiệm trái dấu)
\(\Leftrightarrow \left\{\begin{matrix} \Delta'_{(*)}=m^2-4>0\\ t_1t_2=4< 0\end{matrix}\right.\) (vô lý)
Do đó không tồn tại $m$ để PT ban đầu có 2 nghiệm
d)
Để PT ban đầu có 3 nghiệm thì PT $(*)$ phải có 2 nghiệm: $1$ nghiệm dương và một nghiệm $t=0$. Như phần b ta đã chỉ ra $(*)$ không thể có nghiệm $t=0$. Do đó không tồn tại $m$ để PT ban đầu có 3 nghiệm.
e)
Để PT ban đầu có 4 nghiệm phân biệt thì $(*)$ phải có 2 nghiệm dương phân biệt
\(\Leftrightarrow \left\{\begin{matrix} \Delta'_{(*)}=m^2-4>0\\ t_1+t_2=2m>0\\ t_1t_2=4>0\end{matrix}\right.\Leftrightarrow m>2\)
PT ban đầu có 4 nghiệm \(x_1=\sqrt{t_1}; x_2=-\sqrt{t_1}; x_3=\sqrt{t_2}; x_3=-\sqrt{t_2}\)
Để \(x_1^4+x_2^4+x_3^4+x_4^4=32\)
\(\Leftrightarrow 2t_1^2+2t_2^2=32\Leftrightarrow t_1^2+t_2^2=16\)
\(\Leftrightarrow (t_1+t_2)^2-2t_1t_2=16\Leftrightarrow 4m^2-2.4=16\)
\(\Leftrightarrow m^2=6\Rightarrow m=\sqrt{6}\) (do $m>2$)
Vậy.........
b: \(\Leftrightarrow\left(x^2+3x+2\right)\left(x^2+3x-18\right)=-36\)
\(\Leftrightarrow\left(x^2+3x\right)^2-16\left(x^2+3x\right)=0\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x-16\right)=0\)
hay \(x\in\left\{0;-3;\dfrac{-3+\sqrt{73}}{2};\dfrac{-3-\sqrt{73}}{2}\right\}\)
c: \(\Leftrightarrow6x^4-18x^3-17x^3+51x^2+11x^2-33x-2x+6=0\)
\(\Rightarrow\left(x-3\right)\left(6x^3-17x^2+11x-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(6x^3-12x^2-5x^2+10x+x-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(6x^2-5x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(3x-1\right)\left(2x-1\right)=0\)
hay \(x\in\left\{3;2;\dfrac{1}{3};\dfrac{1}{2}\right\}\)
d: \(\Leftrightarrow\left(x-1\right)^2\cdot\left(x^2+3x+1\right)=0\)
hay \(x\in\left\{1;\dfrac{-3+\sqrt{5}}{2};\dfrac{-3-\sqrt{5}}{2}\right\}\)