Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ĐKXĐ \(\orbr{\begin{cases}x\ge3+\sqrt{2}\\x\le3-\sqrt{2}\end{cases}}\)
Đặt \(\sqrt{x^2-6x+7}=a\ge0.\)\(\Rightarrow x^2-6x+7=a^2\Leftrightarrow x^2-6x=a^2-7\)
Ta có phương trình:
\(a^2-7+a=5\Leftrightarrow a^2+a-12=0\Leftrightarrow a^2-3a+4a-12=0\)
\(\Leftrightarrow a\left(a-3\right)+4\left(a-3\right)=0\Leftrightarrow\left(a-3\right)\left(a+4\right)=0\)
\(\Leftrightarrow a-3=0\)(Vì \(a\ge0\rightarrow a+4\ge4\))
\(\Leftrightarrow a=3\Leftrightarrow\sqrt{x^2-6x+7}=3\)
\(\Leftrightarrow x^2-6x+7=9\Leftrightarrow x^2-6x-2=0\)
Ta có \(\Delta^'=3^2-\left(-2\right)=11>0\)
\(\Rightarrow x_1=3-\sqrt{11}\)(TMĐK)
\(x_2=3+\sqrt{11}\)(TMĐK)
Kết luận vậy phương trình đã cho có 2 nghiệm phân biệt .............
b) ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{x+1}=a\ge0;\sqrt{x+6}=b>0\)
\(\Rightarrow b^2-a^2=x+6-\left(x+1\right)=5\)
Ta có hệ phương trinh :\(\hept{\begin{cases}a+b=5\\b^2-a^2=5\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(b-a\right)\left(b+a\right)=5\\a+b=5\end{cases}}\Leftrightarrow\hept{\begin{cases}b-a=1\\a+b=5\end{cases}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}}\)(TMĐK)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+1}=2\\\sqrt{x+6}=3\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=4\\x+6=9\end{cases}\Leftrightarrow}}x=3\left(TMĐK\right).\)
Vậy phương trình đã cho có nghiệm duy nhất là ...
Chỗ đó bạn viết đề mình không biết vế phải bằng 5 hay 55 nữa
Nếu là 55 thì làm tương tự và chỗ hệ thay bằng \(\hept{\begin{cases}a+b=55\\b^2-a^2=5\end{cases}}\)Giải tương tự tìm được \(\hept{\begin{cases}a=\frac{302}{11}\\b=\frac{303}{11}\end{cases}\Leftrightarrow x=\frac{91083}{121}\left(TMĐK\right).}\)
c) ĐKXĐ \(x\ge1\)
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=4\)
\(\Leftrightarrow\sqrt{x-1-2.\sqrt{x-1}.2+4}+\sqrt{x-1-2.\sqrt{x-1}.3+9}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=4\)
\(\Leftrightarrow|\sqrt{x-1}-2|+|\sqrt{x-1}-3|=4\)(3)
* Nếu \(\sqrt{x-1}< 2\)phương trình (3) tương đương với
\(2-\sqrt{x-1}+3-\sqrt{x-1}=4\Leftrightarrow2\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=\frac{1}{4}\Leftrightarrow x=\frac{5}{4}\left(TMĐK\right)\)
* Nếu \(2\le\sqrt{x-1}\le3\)phương trình (3) tương đương với
\(\sqrt{x-1}-2+3-\sqrt{x-1}=4\Leftrightarrow1=4\left(loại\right)\)
* Nếu \(\sqrt{x-1}>3\)phương trình (3) tương đương với
\(\sqrt{x-1}-2+\sqrt{x-1}-3=4\)\(\Leftrightarrow2\sqrt{x-1}=9\Leftrightarrow\sqrt{x-1}=\frac{9}{2}\Leftrightarrow x-1=\frac{81}{4}\Leftrightarrow x=\frac{85}{4}\left(TMĐK\right)\)
Vậy phương trình đã cho có 2 nghiệm phân biệt .......
'
b: Ta có: \(\sqrt{x^2-6x+9}-\dfrac{\sqrt{6}+\sqrt{3}}{\sqrt{2}+1}=0\)
\(\Leftrightarrow x^2-6x+9=3\)
\(\Leftrightarrow x^2-6x+6=0\)
\(\text{Δ}=\left(-6\right)^2-4\cdot1\cdot6=36-24=12\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{6-2\sqrt{3}}{2}=3-\sqrt{3}\\x_2=3+\sqrt{3}\end{matrix}\right.\)
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
1)
ĐK: \(x\geq 5\)
PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)
\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)
\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)
2)
ĐK: \(x\geq -1\)
\(\sqrt{x+1}+\sqrt{x+6}=5\)
\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)
\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)
\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)
Vì \(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$
\(\Rightarrow x=3\) (thỏa mãn)
Vậy .............
Thiên Thư mk cx hk lp 7 nek
a\ \(\sqrt{x^2-4x+4}=6\)
\(x^2-4x+4=6^2=36\)
\(x\left(x-4\right)=32\)
ta có \(32=8.4=\left(-8\right)\left(-4\right)\)
\(\Rightarrow x\in\left\{8;-4\right\}\)
b)\(\sqrt{2x+5}=2x-1\)
\(2x+4=4x^2-4x\)
\(2\left(x+2\right)=4x\left(4x-1\right)\)
\(........................\)
e bí mất r a ạ
Bài 4:
a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))
\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3
\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)
\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)
\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)
\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)
\(\Leftrightarrow\) \(2x^2+7x+3=0\)
\(\Delta=7^2-4.2.3=25\); \(\sqrt{\Delta}=5\)
Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:
\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)
Vậy ...
Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được
Bài 5:
a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)
\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)
\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)
\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)
\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)
Vậy ...
Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\); \(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!
VD1:
a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))
\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)
\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)
\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)
Vậy ...
Phần b tương tự nha
c, \(\sqrt{3}x^2-\sqrt{12}=0\)
\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)
\(\Leftrightarrow\) \(x^2=2\)
\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)
Vậy ...
d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)
\(\Leftrightarrow\) \(x-1=5\)
\(\Leftrightarrow\) \(x=6\)
Vậy ...
VD2:
Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)
b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))
\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(x^2=3\)
\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)
Vậy ...
c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))
\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)
\(\Leftrightarrow\) \(2x^2-4x=0\)
\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)
a/ ĐKXĐ:...
\(\Leftrightarrow x^2-6x+7+\sqrt{x^2-6x+7}-12=0\)
Đặt \(\sqrt{x^2-6x+7}=a\ge0\)
\(a^2+a-12=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-6x+7}=3\Rightarrow x^2-6x-2=0\)
\(\Rightarrow x=3\pm\sqrt{11}\)
b/ ĐKXĐ: \(x\ge-1\)
\(\Leftrightarrow x+1+x+6+2\sqrt{x^2+7x+6}=25\)
\(\Leftrightarrow\sqrt{x^2+7x+6}=9-x\left(x\le9\right)\)
\(\Leftrightarrow x^2+7x+6=x^2-18x+81\)
\(\Rightarrow x=3\)
c/ ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=4\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=4\)
Chia 3 trường hợp: \(1\le x\le5\); \(x\ge10\); \(5< x< 10\) để phá trị tuyệt đối và giải bình thường
Tks bạn nhaa ^^