K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(2x+3>1-x\)

\(\Leftrightarrow3x>-2\)

hay \(x>-\dfrac{2}{3}\)

b: Ta có: \(15-2\left(x-3\right)< -2x+5\)

\(\Leftrightarrow15-2x+6+2x-5< 0\)

\(\Leftrightarrow16< 0\left(vôlý\right)\)

c: Ta có: \(\left(x+1\right)\left(x-3\right)\le\left(x+4\right)\left(x-1\right)\)

\(\Leftrightarrow x^2-3x+x-3-x^2+x-4x+4\le0\)

\(\Leftrightarrow-5x\le-1\)

hay \(x\ge\dfrac{1}{5}\)

f: Ta có: \(\left(x+1\right)\left(x-2\right)-\left(2-x\right)\left(3-x\right)>0\)

\(\Leftrightarrow x^2-2x+x-2-\left(x-2\right)\left(x-3\right)>0\)

\(\Leftrightarrow x^2-x-2-x^2+5x-6>0\)

\(\Leftrightarrow4x>8\)

hay x>2

g: Ta có: \(\left(2x-1\right)^2\le2\left(x-1\right)^2\)

\(\Leftrightarrow4x^2-4x+1-2x^2+4x-2\le0\)

\(\Leftrightarrow2x^2\le1\)

\(\Leftrightarrow x^2\le\dfrac{1}{2}\)

\(\Leftrightarrow-\dfrac{\sqrt{2}}{2}\le x\le\dfrac{\sqrt{2}}{2}\)

d: Ta có: \(\dfrac{2x+1}{3}-\dfrac{1-x}{2}\ge1-\dfrac{x}{4}\)

\(\Leftrightarrow8x+4-6+6x\ge12-3x\)

\(\Leftrightarrow14x+3x\ge12+2=14\)

\(\Leftrightarrow x\ge\dfrac{14}{17}\)

e: Ta có: \(\dfrac{x+1}{2}-\dfrac{2-x}{3}< \dfrac{2x-3}{4}\)

\(\Leftrightarrow6x+12+4x-8< 6x-9\)

\(\Leftrightarrow4x< -9+8-12=-13\)

hay \(x< -\dfrac{13}{4}\)

11 tháng 6 2021

a, \(\frac{2\left(2-3x\right)}{5}< \frac{4-2x}{3}\Leftrightarrow\frac{4-6x}{5}-\frac{4-2x}{3}< 0\)

\(\Leftrightarrow\frac{12-18x-20+10x}{15}< 0\Leftrightarrow-8x-8< 0\Leftrightarrow x>-1\)vì 15 > 0 

-/-/-(----|------> 

    -1    0                           

Vậy tập ngiệm của bft là S = { x | x > -1 }

b, \(x\left(9x+1\right)+1\le\left(1-3x\right)^2\Leftrightarrow9x^2+x+1\le1-6x+9x^2\)

\(\Leftrightarrow7x\le0\Leftrightarrow x\le0\)

-------]--/-/-/-/-->

       0

Vậy tập nghiệm của bft là S = { x | x =< 0 } 

10 tháng 6 2021

\(\frac{2\cdot\left(2-3x\right)}{5}< \frac{4-2x}{3}\)   

\(\frac{4-6x}{5}< \frac{4-2x}{3}\)   

\(\left(4-6x\right)\cdot3< \left(4-2x\right)\cdot5\)   

\(12-18x< 20-10x\)   

\(10x-18x< 20-12\)   

\(-8x< 8\)   

\(x>-1\)   

\(x\cdot\left(9x+1\right)+1\le\left(1-3x\right)^2\)   

\(9x^2+x+1\le9x^2-6x+1\)   

\(x\le-6x\)   

\(x+6x\le0\)   

\(7x\le0\)   

\(x\le0\)

3:

a: u+v=14 và uv=40

=>u,v là nghiệm của pt là x^2-14x+40=0

=>x=4 hoặc x=10

=>(u,v)=(4;10) hoặc (u,v)=(10;4)

b: u+v=-7 và uv=12

=>u,v là các nghiệm của pt:

x^2+7x+12=0

=>x=-3 hoặc x=-4

=>(u,v)=(-3;-4) hoặc (u,v)=(-4;-3)

c; u+v=-5 và uv=-24

=>u,v  là các nghiệm của phương trình:

x^2+5x-24=0

=>x=-8 hoặc x=3

=>(u,v)=(-8;3) hoặc (u,v)=(3;-8)

30 tháng 9 2019

a) + Xét phương trình 2x + y = 4 (1) ⇔ y = -2x + 4

Vậy phương trình (1) có nghiệm tổng quát là (x ; -2x + 4) (x ∈ R).

+ Xét phương trình 3x + 2y = 5 (2) ⇔ Giải bài 7 trang 12 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình (2) có nghiệm tổng quát là : Giải bài 7 trang 12 SGK Toán 9 Tập 2 | Giải toán lớp 9 (x ∈ R).

b) Đường thẳng biểu diễn tập nghiệm của phương trình (1) là đường thẳng (d) : y = -2x + 4.

Chọn x = 0 ⇒ y = 4

Chọn y = 0 ⇒ x = 2.

⇒ (d) đi qua hai điểm (0; 4) và (2; 0).

Đường thẳng biểu diễn tập nghiệm của phương trình (2) là đường thẳng (d’) : Giải bài 7 trang 12 SGK Toán 9 Tập 2 | Giải toán lớp 9

Chọn x = 0 ⇒ y = 2,5.

Chọn y = 0 ⇒ Giải bài tập Toán lớp 9 | Giải Toán lớp 9

⇒ (d’) đi qua hai điểm (0; 2,5) và Giải bài 7 trang 12 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 7 trang 12 SGK Toán 9 Tập 2 | Giải toán lớp 9

Hai đường thẳng cắt nhau tại A(3; -2).

Vậy (3; -2) là nghiệm chung của hai phương trình (1) và (2).

a: =>3x^2-3x-2x+2=0

=>(x-1)(3x-2)=0

=>x=2/3 hoặc x=1

b: =>2x^2=11

=>x^2=11/2

=>\(x=\pm\dfrac{\sqrt{22}}{2}\)

c: Δ=5^2-4*1*7=25-28=-3<0

=>PTVN

f: =>6x^4-6x^2-x^2+1=0

=>(x^2-1)(6x^2-1)=0

=>x^2=1 hoặc x^2=1/6

=>\(\left[{}\begin{matrix}x=\pm1\\x=\pm\dfrac{\sqrt{6}}{6}\end{matrix}\right.\)

d: =>(5-2x)(5+2x)=0

=>x=5/2 hoặc x=-5/2

e: =>4x^2+4x+1=x^2-x+9 và x>=-1/2

=>3x^2+5x-8=0 và x>=-1/2

=>3x^2+8x-3x-8=0 và x>=-1/2

=>(3x+8)(x-1)=0 và x>=-1/2

=>x=1

11 tháng 2 2017

a) 2x+y=4⇔y=−2x+4⇔x=12−y+2. Do đó phương trình có nghiệm dạng tổng quát như sau:

{x∈Ry=−2x+4 hoặc {x=−12x+2y∈R

b) Vẽ (d1): 2x + y = 4

- Cho x = 0 => y = 4 được A(0; 4).

- Cho y = 0 => x = 2 được B(2; 0).

Vẽ (d2): 3x + 2y = 5

- Cho x = 0 => y =  được C(0; ).

- Cho y = 0 => x =  được D(; 0).

Hai đường thẳng cắt nhau tại M(3; -2).

Thay x = 3, y = -2 vào từng phương trình ta được:

2 . 3 + (-2) = 4 và 3 . 3 + 2 . (-2) = 5 (thỏa mãn)

Vậy (x = 3; y = -2) là nghiệm chung của các phương trình đã cho.