Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x^2\ge2\)
Đặt \(\sqrt{x^2-2}=a\ge0\)
BPT tương đương: \(\dfrac{1}{\sqrt{a^2+3}}+\dfrac{1}{\sqrt{3a^2+11}}\le\dfrac{2}{a+1}\)
Ta có: \(VT^2\le2\left(\dfrac{1}{a^2+3}+\dfrac{1}{3a^2+11}\right)< 2\left(\dfrac{1}{a^2+3}+\dfrac{1}{3a^2+1}\right)=\dfrac{8\left(a^2+1\right)}{\left(3a^2+1\right)\left(a^2+3\right)}\)
Mặt khác ta có: \(\left(a-1\right)^4\ge0\Leftrightarrow a^4-4a^3+6a^2-4a+1\ge0\)
\(\Leftrightarrow3a^4+10a^2+3\ge2a^4+4a^3+4a^2+4a+2\)
\(\Leftrightarrow\left(3a^2+1\right)\left(a^2+3\right)\ge2\left(a^2+1\right)\left(a+1\right)^2\)
\(\Rightarrow\dfrac{8\left(a^2+1\right)}{\left(3a^2+1\right)\left(a^2+3\right)}\le\dfrac{4}{\left(a+1\right)^2}\)
\(\Rightarrow VT^2< \dfrac{4}{\left(a+1\right)^2}\Rightarrow VT< \dfrac{2}{a+1}\)
\(\Rightarrow\) BPT đã cho đúng với mọi \(a\ge0\) hay nghiệm của BPT là \(x^2\ge2\)
ĐKXĐ: \(-2\le x\le3\)
\(\Leftrightarrow3x^3+3x^2-12x-12+x+4-3\sqrt{x+2}+5-x-3\sqrt{3-x}\ge0\)
\(\Leftrightarrow\left(x^2-x-2\right)\left(3x+6\right)+\frac{x^2-x-2}{x+4+3\sqrt{x+2}}+\frac{x^2-x-2}{5-x+3\sqrt{3-x}}\ge0\)
\(\Leftrightarrow\left(x^2-x-2\right)\left[3\left(x+2\right)+\frac{1}{x+4+3\sqrt{x+2}}+\frac{1}{5-x+3\sqrt{3-x}}\right]\ge0\)
\(\Leftrightarrow x^2-x-2\ge0\)
\(\Rightarrow\left[{}\begin{matrix}-2\le x\le-1\\2\le x\le3\end{matrix}\right.\)
1) ĐKXĐ: \(\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)
ta có: (-6).\(\sqrt{6x^2-18x+12}\) > \(6x^2-18x-60\)
⇔ \(6x^2-18x+12\) + \(2.3.\sqrt{6x^2-18x+12}+9-81\) > 0
⇔ \(\left(\sqrt{6x^2-18x+12}+3\right)^2-9^2\) > 0
⇔ \(\left(\sqrt{6x^2-18x+12}+12\right).\left(\sqrt{6x^2-18x+12}-6\right)\) > 0
⇔ \(\sqrt{6x^2-18x+12}-6\) > 0
⇔ \(\sqrt{6x^2-18x+12}>6\)
⇔\(6x^2-18x+12>36\)
⇔ \(6x^2-18x-24>0\)
⇔\(\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\)
đối chiếu ĐKXĐ ban đầu ta được: x ϵ (-∞;-1) \(\cup\)(4;+∞)
b) ĐKXĐ: \(\forall x\) ϵ R
\(\left(x-2\right)\sqrt{x^2+4}-\left(x-2\right)\left(x+2\right)\le0\)
⇔\(\left(x-2\right)\left(\sqrt{x^2+4}-x-2\right)\le0\)
⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\\sqrt{x^2+4}-x-2\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\\sqrt{x^2+4}-x-2\ge0\end{matrix}\right.\end{matrix}\right.\)⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x^2+4\le x^2+4x+4\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x^2+4\ge x^2+4x+4\end{matrix}\right.\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x\le0\end{matrix}\right.\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.\)
Đối chiếu ĐKXĐ ta được x ϵ ( -∞;0) \(\cup\)( 2; +∞)
a. \(\sqrt{\left(x-1\right)\left(4-1\right)}>x-2\) ⇔ \(\sqrt{-x^2+5x-4}>x-2\)
ĐK: 1 ≤ x ≤ 4 (1)
BPT ⇔ \(\left[{}\begin{matrix}x-2< 0\\\left\{{}\begin{matrix}x-2>0\\-x^2+5x-4>x^2-4x+4\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x< 2\\\left\{{}\begin{matrix}x>2\\\frac{9-\sqrt{17}}{4}< x< \frac{9+\sqrt{17}}{4}\end{matrix}\right.\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x< 2\\2< x< \frac{9+\sqrt{17}}{4}\end{matrix}\right.\) (2)
Từ (1), (2) suy ra: \(\left[{}\begin{matrix}1\le x< 2\\2< x< \frac{9+\sqrt{17}}{4}\end{matrix}\right.\) ⇔ x ∈ (1; \(\frac{9+\sqrt{17}}{4}\))\(|\left\{2\right\}\)
b. ĐK: -3 ≤ x ≤ 4 (1)
BPT ⇔ \(\left\{{}\begin{matrix}x-11\ge0\\12+x-x^2\le\left(x-11\right)^2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x\ge11\\\forall x\end{matrix}\right.\) ⇔ x ≥ 11 (2)
Từ (1), (2) suy ra: BPT vô nghiệm
c. ĐK: x ≤ -2, x ≥ 2 (1)
BPT ⇔ (x -3)\(\sqrt{x^2-4}\) ≤ (x - 3)(x + 3)
- Xét x = 3 là nghiệm của BPT (2)
- Xét x≠ 3, BPT ⇔ \(\sqrt{x^2-4}\) ≤ x + 3
⇔ \(\left\{{}\begin{matrix}x+3\ge0\\x^2-4\le\left(x+3\right)^2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x\ge-3\\x\ge\frac{-5}{2}\end{matrix}\right.\) ⇔ x ≥ \(\frac{-5}{2}\) (3)
Từ (1), (2), (3) suy ra BPT có nghiệm: x ∈ \([\frac{-5}{2};4]\)
ĐK: \(x\ge1;x\le-2\)
\(\sqrt{x^2-1}+\sqrt{x^2-x}\le\sqrt{x^2+x-2}\)
\(\Leftrightarrow2x^2-x-1+2\sqrt{\left(x^2-1\right)\left(x^2-x\right)}\le x^2+x-2\)
\(\Leftrightarrow x^2-2x+1+2\sqrt{\left(x^2-1\right)\left(x^2-x\right)}\le0\)
\(\Leftrightarrow\left(x-1\right)^2+2\sqrt{\left(x^2-1\right)\left(x^2-x\right)}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\left(x^2-1\right)\left(x^2-x\right)=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\left(tm\right)\)
Vậy bất phương trình có nghiệm \(x=1\)
Đặt \(t=x+\sqrt{1-x^2}\left(t\ge0\right)\)
=> \(t^2=x^2+1-x^2+2x\sqrt{1-x^2}\)
=> \(x\sqrt{1-x^2}=\frac{t^2-1}{2}\)
Thế vào bpt ta có : \(t< \frac{t^2-1}{2}\)
<=> \(t^2-2t-1>0\)
<=> \(\orbr{\begin{cases}t>1+\sqrt{2}\\t< 1-\sqrt{2}\end{cases}}\)
Bạn thay vào giải tiếp nha