K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

đề = x-1>=0 \(\rightarrow\)x>=1

2x-3>=0\(\rightarrow\)x>=1,5

so sánh điều kiện S=(1;1,5)

ta thay đấu() = đấu ngoặc nhọn

8 tháng 7 2020

\(\frac{x-2}{18}-\frac{2x+5}{12}>\frac{x+6}{9}-\frac{x-3}{6}\)

\(\Leftrightarrow\frac{2\left(x-2\right)}{36}-\frac{3\left(2x+5\right)}{36}>\frac{4\left(x+6\right)}{36}-\frac{6\left(x-3\right)}{36}\)

\(\Leftrightarrow2x-4-6x-15>4x+24-6x+18\)

\(\Leftrightarrow2x-6x-4x+6x>24+18+4+15\)

\(\Leftrightarrow-2x>61\)

\(\Leftrightarrow x< -\frac{61}{2}\)

Vậy nghiệm của bất phương trình là \(x< -\frac{61}{2}\)

8 tháng 7 2020

Bài b và c làm cách mình thì dễ hiểu hơn nhiều :3

\(\left(2x-2\right)\left(2x+3\right)\le0\)

TH1 : \(\hept{\begin{cases}2x-3\le0\\2x+3\ge0\end{cases}< =>\hept{\begin{cases}2x\le3\\2x\ge-3\end{cases}}}\)

\(< =>\hept{\begin{cases}x\le\frac{3}{2}\\x\ge-\frac{3}{2}\end{cases}}\)

TH2 : \(\hept{\begin{cases}2x-3\ge0\\2x+3\le0\end{cases}< =>\hept{\begin{cases}2x\ge3\\2x\le-3\end{cases}}}\)

\(< =>\hept{\begin{cases}x\ge\frac{3}{2}\\x\le-\frac{3}{2}\end{cases}}\)

Vậy ...

19 tháng 5 2017

a) \(2-x\ge0\Leftrightarrow x\le2\)(chuyển x sang bên phải rồi đảo vế)

b) \(2+x\ge0\Leftrightarrow x\ge-2\)(cộng cả hai vế với -2)

c) \(7-x\ge0\Leftrightarrow x\le7\)(giống phần a)

Bạn tự kết luận nha!!

19 tháng 5 2017

a) \(2-x\ge0\Leftrightarrow x\le2\)

b) \(2+x\ge0\Leftrightarrow x\ge-2\)

c) \(7-x\ge0\Leftrightarrow x\le7\)

15 tháng 7 2019

1) Đề sai, thử với x = -2 là thấy không thỏa mãn.

Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:

\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)

\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)

Không thể xảy ra dấu đẳng thức.

a, Ta có\(\left(x+3\right)^2+3\left(x-1\right)\ge x^2-4\)

\(\Leftrightarrow x^2+6x+9+3x-3\ge x^2-4\)

\(\Leftrightarrow x^2+9x+6\ge x^2-4\)

\(\Leftrightarrow9x+10\ge0\Leftrightarrow x\ge-\frac{10}{9}\)

3 tháng 7 2020

\(\left(x+3\right)^2+3\left(x-1\right)\ge x^2-4\)

\(\Leftrightarrow x^2+6x+9+3x-3\ge x^2-4\)

\(\Leftrightarrow x^2+6x+3x-x^2\ge-4-9+3\)

\(\Leftrightarrow9x\ge-10\)

\(\Leftrightarrow x\ge-\frac{10}{9}\)

a) Ta có: \(2x^2+3xy+2y^2\)

\(=2\left(x^2+\dfrac{3}{2}xy+y^2\right)\)

\(=2\left(x^2+2\cdot x\cdot\dfrac{3}{4}y+\dfrac{9}{16}y^2+\dfrac{7}{16}y^2\right)\)

\(=2\left(x+\dfrac{3}{4}y\right)^2+\dfrac{7}{8}y^2\ge0\forall x,y\)(đpcm)

14 tháng 4 2021

còn câu b bạn làm hộ mình với

 

27 tháng 5 2016

câu a là  nhân 2 hay mũ 2

27 tháng 5 2016

* la the nao