Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét: \(\sqrt{1+n^2+\frac{n^2}{\left(n+1\right)^2}}=\sqrt{\frac{\left(n+1\right)^2+n^2\left(n+1\right)^2+n^2}{\left(n+1\right)^2}}\) (với \(n\inℕ\))
\(=\sqrt{\frac{n^2+2n+1+n^4+2n^3+n^2+n^2}{\left(n+1\right)^2}}\)
\(=\sqrt{\frac{n^4+n^2+1+2n^3+2n^2+2n}{\left(n+1\right)^2}}\)
\(=\sqrt{\frac{\left(n^2+n+1\right)^2}{\left(n+1\right)^2}}=\frac{n^2+n+1}{n+1}=n+\frac{1}{n+1}\)
Áp dụng vào ta tính được: \(\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}=2015+\frac{1}{2016}+\frac{2015}{2016}\)
\(=2015+1=2016\)
Khi đó: \(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=2016\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2016\)
Đến đây xét tiếp các TH nhé, ez rồi:))
chẳng biết đúng ko,mới lớp 5
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=\sqrt{1+2015^2+\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
\(\sqrt{x^2}-\sqrt{2x}+\sqrt{1}+\sqrt{x^2}-\sqrt{4x}+\sqrt{4}=\sqrt{1}+\sqrt{2015^2}+\sqrt{\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
\(\sqrt{x^2}-\sqrt{6x}+3=1+2015+\frac{2015}{2016}+\frac{2015}{2016}\)
\(x-\sqrt{6x}=1+\frac{2015}{1+2016+2016}-3\)
\(x-\sqrt{6x}=2-\frac{2015}{4033}\)
\(x-\sqrt{6x}=\frac{6051}{4033}\)
Lời giải:
Số số hạng ở tử: $(2x-2):2+1=x$
$\Rightarrow 2+4+6+...+2x=(2x+2).x:2=x(x+1)$
Số số hạng ở mẫu: $(2x+1-1):2+1=x+1$
$\Rightarrow 1+3+5+...+(2x+1)=(2x+1+1)(x+1):2=(x+1)^2$
Khi đó PT trở thành:
$\frac{x(x+1)}{(x+1)^2}=\frac{2016}{2015}$
$\frac{x}{x+1}=\frac{2016}{2015}$
$2015x=2016(x+1)$
$x=-2016$
\(\Leftrightarrow\left(2x-1\right)\left(...\right)=0\Rightarrow x=\frac{1}{2}\)
\(\frac{2x-1}{2020}-\frac{2x-1}{2019}+\frac{2x-1}{2018}=\frac{2x-1}{2017}-\frac{2x-1}{2016}\\ \Leftrightarrow\frac{2x-1}{2020}-\frac{2x-1}{2019}+\frac{2x-1}{2018}-\frac{2x-1}{2017}+\frac{2x-1}{2016}=0\\ \Leftrightarrow\left(2x-1\right)\left(\frac{1}{2020}-\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}+\frac{1}{2016}\right)=0\)
mà \(\frac{1}{2020}-\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}+\frac{1}{2016}\ne0\)
thì \(2x-1=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\frac{1}{2}\)
vậy \(x=\frac{1}{2}\)
a) \(\frac{x+\frac{x+1}{5}}{3}=1-\frac{2x-\frac{1-2x}{34}}{5}\)
\(\Leftrightarrow\frac{\frac{5x+x+1}{5}}{3}=1-\frac{\frac{68x-1+2x}{34}}{5}\)
\(\Leftrightarrow\frac{6x+1}{15}=1-\frac{70-1}{170}\)
\(\Leftrightarrow\frac{6x+1}{15}+\frac{70x-1}{170}-1=0\)
\(\Leftrightarrow\frac{34\left(6x+1\right)+3\left(70x-1\right)-510}{510}=0\)
\(\Leftrightarrow204x+34+210x-3-510=0\)
\(\Leftrightarrow414x-479=0\)
\(\Leftrightarrow x=\frac{479}{414}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{479}{414}\right\}\)
b) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow\)\(\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)
Đặt \(x^2+3x=t\) ta có:
\(t\left(t+2\right)-24=0\)
\(\Leftrightarrow\)\(t^2+2t-24=0\)
\(\Leftrightarrow\)\(\left(1-4\right)\left(1+6\right)=0\)
đến đây bn giải tiếp
a/ \(\frac{x^2+2x+1}{x^2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}=\frac{7}{6}\)
<=> \(\frac{\left(x+1\right)^2}{\left(x+1\right)^2+1}+\frac{\left(x+1\right)^2+1}{\left(x+1\right)^2+2}=\frac{7}{6}\left(1\right)\)
đặt \(\left(x+1\right)^2=a\left(a>0\right)\)
=> \(\left(1\right)\)<=> \(\frac{a}{a+1}+\frac{a+1}{a+2}=\frac{7}{6}\)
<=> \(\frac{a\left(a+2\right)+\left(a+1\right)^2}{\left(a+1\right)\left(a+2\right)}=\frac{7}{6}\)
<=> \(\frac{2a^2+4a+1}{a^2+3a+2}=\frac{7}{6}\)
<=> \(6\left(2a^2+4a+1\right)=7\left(a^2+3a+2\right)\)
<=> \(5a^2+3a-8=0\)
<=> \(5a^2-5a+8a-8=0\)
<=> \(\left(5a+8\right)\left(a-1\right)=0\)
<=> \(a=\frac{-8}{5}\left(h\right)a=1\)
mà \(a>0\)
=> \(a=1\)
=> \(\left(x+1\right)^2=1\)
=> \(x+1=1\left(h\right)x+1=-1\)
=> \(x=0\left(h\right)x=-2\)
vậy ......
chúc bn học tốt
Xét x = 0 và x = -2 , thay vào ta được \(VT=VP\)
Xét x > 0 :
\(VT=\frac{x^2+2x+1}{x^2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}=1-\frac{1}{x^2+2x+2}+1-\frac{1}{x^2+2x+3}\)
\(=2-\left(\frac{1}{x^2+2x+2}+\frac{1}{x^2+2x+3}\right)>2-\left(\frac{1}{2}+\frac{1}{3}\right)>\frac{7}{6}=VP\) ( loại )
Xét x < -2 :
\(VT=2-\left(\frac{1}{x\left(x+2\right)+2}+\frac{1}{x\left(x+2\right)+3}\right)>2-\left(\frac{1}{2}+\frac{1}{3}\right)=\frac{7}{6}=VP\) ( loại )
Xét -2 < x < 0 :
\(VT=2-\left(\frac{1}{x^2+2x+2}+\frac{1}{x^2+2x+3}\right)>2-\left(\frac{1}{-2}+1\right)=\frac{3}{2}>\frac{7}{6}=VP\) ( loại )
Vậy ...
\(\frac{2x-4}{2014}+\frac{2x-2}{2016}\) và \(\frac{2x-1}{2017}+\frac{2x-3}{2015}\)
VT = \(\frac{2x-4}{2014}+\frac{2x-2}{2016}\)
= \(\frac{2x-4}{2014}+1+\frac{2x-2}{2016}+1\)
= \(\frac{2x-2018}{2014}+\frac{2x-2018}{2016}\)
VP = \(\frac{2x-1}{2017}+\frac{2x-3}{2015}\)
= \(\frac{2x-1}{2017}+1+\frac{2x-3}{2015}+1\)
= \(\frac{2x-2018}{2017}+\frac{2x-2018}{2015}\)
Mà \(\frac{2x-2018}{2014}>\frac{2x-2018}{2015}\) và \(\frac{2x-2018}{2016}>\frac{2x-2018}{2017}\)
nên \(\frac{2x-4}{2014}+\frac{2x-2}{2016}\) > \(\frac{2x-1}{2017}+\frac{2x-3}{2015}\)
Chúc bn học tốt!!