Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện \(\begin{cases}x\ne1\\x>\frac{1}{2}\end{cases}\)
\(\log_3\left(x-1\right)^2+\log_{\sqrt{3}}\left(2x-1\right)=2\Leftrightarrow2\log_3\left|x-1\right|+2\log_3\left(2x-1\right)=2\)
\(\Leftrightarrow\log_3\left|x-1\right|\left(2x-1\right)=\log_33\)
\(\Leftrightarrow\left|x-1\right|\left(2x-1\right)=3\)
\(\frac{1}{2}\)<x<1 và \(2x^2-3x+4=0\)
hoặc x>1 và \(2x^2-3x-2=0\)
\(\Leftrightarrow x=2\) thỏa mãn điều kiện. Vậy x=2
\(\log_{\frac{1}{2}}\left(4^x+4\right)\ge\log_{\frac{1}{2}}\left(2^{x+1}-3\right)-\log_22^x\)
\(\Leftrightarrow\log_{\frac{1}{2}}\left(4^x+4\right)\ge\log_{\frac{1}{2}}\left(2^{x+1}-3\right)+\log_{\frac{1}{2}}2^x\)
\(\Leftrightarrow\log_{\frac{1}{2}}\left(4^x+4\right)\ge\log_{\frac{1}{2}}\left(2^{2x+1}-3^x\right)\)
\(\Leftrightarrow4^x+4\le2^{2x+1}-3.2^x\)
\(\Leftrightarrow4^x-3.2^x-4\ge0\)
\(\Leftrightarrow\begin{cases}2^x\le-1\left(L\right)\\2^x\ge4\end{cases}\)\(\Leftrightarrow x\ge2\)
Vậy bất phương trình có tập nghiệm \(S=\left(2;+\infty\right)\)
Điều kiện x>0.
Phương trình đã cho tương đương :
\(\log_3\left(x^2+2x\right)-\log_3\left(3x+2\right)=0\)
\(\Leftrightarrow\log_3\left(x^2+2x\right)=\log_3\left(3x+2\right)\)
\(\Leftrightarrow x^2+2x=3x+2\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\begin{cases}x=-1\\x=2\end{cases}\)
Đối chiếu điều kiện ta có phương trình đã cho có nghiệm là \(x=2\)
Điều kiện : \(x>\frac{3}{4}\)
\(\Leftrightarrow\log_3\left(4x-3\right)^2-\log_3\left(2x+3\right)=2\)
\(\Leftrightarrow\log_3\frac{\left(4x-3\right)^2}{2x+3}=2\)
\(\Leftrightarrow8x^2-21x-9=0\)
\(\Leftrightarrow x=3\) hoặc \(x=\frac{-3}{8}\)
Đối chiếu điều kiện ta được nghiệm \(x=3\)
Ta có điều kiện của bất phương trình là
\(x^2+2x-8>0\)
Khi đó ta có thể viết bất phương trình dưới dạng :
\(\log_{\frac{1}{2}}\left(x^2+2x-8\right)\ge\log_{\frac{1}{2}}16\)
Vì cơ số \(\frac{1}{2}\) nhỏ hơn 1 nên bất phương trình trên tương đương với hệ
\(\begin{cases}x^2+2x-8>0\\x^2+2x-8\le16\end{cases}\) \(\Leftrightarrow\begin{cases}x<-4Vx>2\\-6\le x\le4\end{cases}\)\(-6\le\)x\(\le-4\) và 2<x\(\le4\)
Vậy tập nghiệm của bất phương trình đã cho là
\(D=\left(-6;4\right)\cup\left(2;4\right)\)
Đặt :
\(t=\sqrt{x^2-5x+5}\left(t\ge0\right)\)
Bất phương trình trở thành :
\(\log_2\left(t+1\right)+\log_3\left(t^2+2\right)\le2\)
Xét \(f\left(t\right)=\log_2\left(t+1\right)+\log_3\left(t^2+2\right)\) trên \(\left(0;+\infty\right)\)
Do \(t\ge0\) nên \(\log_2\left(t+1\right)\) và \(\log_3\left(t^2+2\right)\) đều là các hàm số đồng biến, do đó f(t) đồng biến trên \(\left(0;+\infty\right)\)
Điều kiện \(x^2-1>0\Leftrightarrow\left|x\right|>1\)
Bất phương trình tương đương với :
\(\log_3\log_{\frac{1}{2}}\left(x^2-1\right)<\log_3\Leftrightarrow0<\log_{\frac{1}{2}}\left(x^2-1\right)<3\)
\(\Leftrightarrow\log_{\frac{1}{2}}1<\log_{\frac{1}{2}}\left(x^2-1\right)<\log_{\frac{1}{2}}\frac{1}{8}\Leftrightarrow1>x^2-1>\frac{1}{8}\)
\(\Leftrightarrow2>x^2>\frac{9}{8}\)
\(\Leftrightarrow\sqrt{2}>\left|x\right|>\frac{3}{2\sqrt{2}}\) (Thỏa mãn)
Vậy tập nghiệm của bất phương trình là \(D=\left(-\sqrt{2};\frac{-3}{2\sqrt{2}}\right)\cup\left(\frac{3}{2\sqrt{2}};\sqrt{2}\right)\)