Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Bảng xét dấu
Dựa vào bảng xét dấu, ta có tập nghiệm của bất phương trình đã cho là
Ta có:
2x2 + 5 ≤ 2x – 1
⇔ 2x2 + 5 + 1 – 2x ≤ 2x – 1 + 1 – 2x (Cộng cả hai vế của BPT với 1 – 2x).
⇔ 2x2 – 2x + 6 ≤ 0.
Vậy hai BPT đã cho tương đương: 2x2 + 5 ≤ 2x – 1 ⇔ 2x2 – 2x + 6 ≤ 0.
\(3.\)
\(-2x^2+3x+2\ge0\)
\(\Leftrightarrow-\left(x-2\right)\left(2x+1\right)\ge0\)
\(\Leftrightarrow\left(2-x\right)\left(2x+1\right)\ge0\)
Giải bất phương trình ra được: \(\frac{-1}{2}\le x\le2\)
Vậy \(x\in\left\{\frac{-1}{2};2\right\}\)
\(5.\)
Đường thẳng đã cho song song với đường thẳng \(2x+y+2020=0\)
<=> Đường thẳng đã cho có véc tơ pháp tuyến là \(n\left(2;1\right)\)
Mà đường thẳng đã cho đi qua \(M\left(3;0\right)\)nên ta có phương trình:
\(2\left(x-3\right)+y=0\)
\(2x+y-6=0\)
Bài 2:
a: =>2x^2-4x+1=x^2+x+5
=>x^2-5x-4=0
=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)
b: =>11x^2-14x-12=3x^2+4x-7
=>8x^2-18x-5=0
=>x=5/2 hoặc x=-1/4
Chọn C
Lập bảng xét dấu
Dựa vào bảng xét dấu, ta có tập nghiệm của bất phương trình đã cho là