Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1:
Ta có: \(x=\frac{a}{m}=\frac{2a}{2m}\) và \(y=\frac{b}{m}=\frac{2b}{2m}\)
Vì x<y nên a<b
Vì 2a< a+b< 2b
=> \(\frac{2a}{2m}
Ta có x = \(\frac{2a}{2m}\)< \(\frac{a+b}{2m}\)= z
y = \(\frac{2b}{2m}\)> \(\frac{a+b}{2m}\)= z
Do x < y => a/m < b/m
=> a/m + a/m < a/m + b/m < b/m + b/m
=> 2x < a+b/m < 2y
=> x < a+b/m : 2 < 2y
=> x < a+b/m . 1/2 < y
=> x < a+b/2m < y
Chứng tỏ ...
do x<y =>a/m<b/m=>a<b
ta có:
x=a/m=2a/2m
y=b/m=2b/2m
do a<b=>a+a/2m<a+b/2m
<=>2a/2m<a+b/2m
<=>x<z (1)
do a<b=>a+b/2m<b+b/2m
<=>a+b/2m<2b/2m
<=>z<y (2)
từ (1) và (2)=>ĐPCM
x =a/m =>. x = 2a/2m
y =b/m => y = 2b/2m
z = (a+b)/2m
theo giả thiết a < b => a + b < b + b => a + b < 2b ........(1)
Ngòa i ra, a < b => a + a < a + b => 2a < a + b ........(2)
Suy ra:
2a < a +b < 2b
Suy ra (chia 2 vế cho 2m) :
2a/2m < (a +b)/2m < 2b
R út gọn ta được : x < z <y
Theo đề bài ta có x = \(\frac{a}{m}\) , y = \(\frac{b}{m}\)( a, b, m \(\in\) Z, m > 0 )
Vì x < y nên ta suy ra a < b
Ta có : x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\), , z = \(\frac{a+b}{2m}\)
Vì a < b => a + a < a +b => 2a < a + b
Do 2a< a +b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a+b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z< y
m>0 và x<y nên a<b Do đó \(x=\frac{a}{m}=\frac{2a}{2m}=\frac{a+a}{2m}
ta có \(\frac{a}{m}