Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(xy-1\right)2^{2xy-1}=\left(x^2+y\right)2^{x^2+y}\)
\(\Leftrightarrow\left(xy-1\right)2^{2\left(xy-1\right)+1}=\left(x^2+y\right)2^{x^2+y}\)
\(\Leftrightarrow2\left(xy-1\right)2^{2\left(xy-1\right)}=\left(x^2+y\right)2^{x^2+y}\)
Do vế phải luôn dương \(\Rightarrow VT>0\Rightarrow xy-1>0\) (1)
Xét hàm \(f\left(t\right)=t.2^t\) với \(t>0\Rightarrow f'\left(t\right)=2^t+t.2^t.ln2>0\)
\(\Rightarrow f\left(t\right)\) đồng biến \(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)
\(\Rightarrow2\left(xy-1\right)=x^2+y\Rightarrow2xy-y=x^2+2\) (thay \(x=\dfrac{1}{2}\) thấy ko phải nghiệm)
\(\Rightarrow y=\dfrac{x^2+2}{2x-1}\) (2)
Thay (2) vào (1): \(xy-1>0\Rightarrow x.\left(\dfrac{x^2+2}{2x-1}\right)-1>0\Rightarrow\dfrac{x^3+2x}{2x-1}-1>0\)
\(\Rightarrow\dfrac{x^3+1}{2x-1}>0\Rightarrow2x-1>0\) (do \(x>0\Rightarrow x^3+1>0\))
Vậy \(y=\dfrac{x^2+2}{2x-1}=\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{9}{4\left(2x-1\right)}=\dfrac{2x-1}{4}+\dfrac{9}{4\left(2x-1\right)}+\dfrac{1}{2}\)
\(\Rightarrow y\ge2\sqrt{\dfrac{\left(2x-1\right)}{4}.\dfrac{9}{4\left(2x-1\right)}}+\dfrac{1}{2}=2\)
\(\Rightarrow y_{min}=2\) khi \(\dfrac{2x-1}{4}=\dfrac{9}{4\left(2x-1\right)}\Rightarrow x=2\)
Đáp án B
\(y=x+sin\left(2x\right)\)
\(y'=1+2cos\left(2x\right)\)
\(y'=0\Leftrightarrow1+cos\left(2x\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{3}\\x=\frac{2\pi}{3}\end{cases}}\)vì \(x\in\left(0,\pi\right)\).
\(y\left(\frac{\pi}{3}\right)=\frac{\pi}{3}+\frac{\sqrt{3}}{2},y\left(\frac{2\pi}{3}\right)=\frac{2\pi}{3}-\frac{\sqrt{3}}{2}\)
\(y\left(\frac{\pi}{3}\right)>y\left(\frac{2\pi}{3}\right)\)ta chọn D.
Cho \(\log_ab=3;\log_ac=-2\)
1. Với \(x=a^3b^2\sqrt{c}\Rightarrow\log_ax=\log_a\left(a^3b^2\sqrt{c}\right)=\log_aa^3+\log_ab^2+\log_ac^{\frac{1}{2}}\)
\(=3+2.3+\frac{1}{2}\left(-2\right)=8\)
2. Với \(x=\frac{a^4\sqrt[3]{b}}{c^3}\) \(\Rightarrow\log_a\frac{a^4\sqrt[3]{b}}{c^2}=\log_aa^4+\log_ab^{\frac{1}{3}}+\log_ac^3\)
\(=4+\frac{1}{3}\log_ab+3\log_ac=4+\frac{1}{3}.3+3\left(-2\right)=-1\)
3. Với \(x=\log_a\frac{a^2\sqrt[3]{b}c}{\sqrt[3]{a\sqrt{c}}b^3}\Rightarrow\log_a\frac{a^2b^{\frac{1}{3}}c}{a^{\frac{1}{3}}b^3c^{\frac{1}{6}}}=\log_a\frac{a^{\frac{5}{3}}c^{\frac{5}{6}}}{b^{\frac{8}{3}}}=\log_aa^{\frac{5}{3}}-\log_ab^{\frac{8}{3}}+\log_ac^{\frac{3}{2}}\)
\(=\frac{5}{3}-\frac{8}{3}\log_ab+\frac{5}{6}\log_ac=\frac{5}{3}-\frac{8}{3}3+\frac{5}{6}\left(-2\right)=-8\)
1)
Dễ thấy \(f(x)=\sqrt{2}-\sqrt{x-1}\leq \sqrt{2}\) nên chỉ cần $0<k<\sqrt{2}$ là bất phương trình có nghiệm
2)
Xét \(y=\sqrt{x^2-1}+\sqrt{x+1}; y'=0\Leftrightarrow x=-1\)
Do đó $y_{min}=0$, hàm số không tồn tại max. Với đk $m$ để phương trình có nghiệm thì chỉ cần $m\geq 0$ (PT luôn có nghiệm khi $m$ nằm trong khoảng max, min)
\(\sqrt{4-x}\ge0\) với mọi x thuộc TXĐ nên \(y=\sqrt{4-x}+\sqrt{3}\ge\sqrt{3}\)
Đáp án D