K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2022

    `[2-x]/[x+3] > x+1`    `ĐK: x \ne -3`

 `=>` Loại đ/á `\bb A`

Thay `x=-1` vào bất ptr có: `1,5 > 0` (Luôn đúng) `->\bb B` t/m

Thay `x=2` vào bất ptr có: `0 > 3` (Vô lí) `->\bb C` loại

Thay `x=0` vào bất ptr có: `2/3 > 1` (Vô lí) `->\bb D` loại

______________________________________________________

      `=>` Chọn `\bb B`

18 tháng 5 2022

`[2-x]/x >= 1`

`<=>[2-x-x]/x >= 0`

`<=>[2-2x]/x >= 0`

`<=>0 < x <= 1`

     `->\bb B`

18 tháng 5 2022

\(-\dfrac{1}{2}x+6< 0\Leftrightarrow-\dfrac{1}{2}x< -6\Leftrightarrow\cdot\dfrac{1}{2}x>6\Leftrightarrow x>12\)

(sai thì thoi nha)

18 tháng 5 2022

\(-\dfrac{1}{2}x+6< 0\)

\(\Leftrightarrow-\dfrac{1}{2}x< -6\)

\(\Leftrightarrow x>\left(-6\right):\left(-\dfrac{1}{2}\right)\)

\(\Leftrightarrow x>12\)

--> Chọn A

8 tháng 4 2017

a) ĐKXĐ: D = {x ∈ R/x ≠ 0 và x + 1 ≠ 0} = R\{0;- 1}.

b) ĐKXĐ: D = {x ∈ R/x2 - 4 ≠ 0 và x2 - 4x + 3 ≠ 0} = R\{±2; 1; 3}.

c) ĐKXĐ: D = R\{- 1}.

d) ĐKXĐ: D = {x ∈ R/x + 4 ≠ 0 và 1 - x ≥ 0} = (-∞; - 4) ∪ (- 4; 1].

18 tháng 5 2022

\(5x-1>2x+3\)

\(\Leftrightarrow5x-2x>3+1\)

\(\Leftrightarrow3x>4\)

\(\Leftrightarrow x>\dfrac{4}{3}\)

--> Chọn C

18 tháng 5 2022

\(5x-1>2x+3\Leftrightarrow5x-2x>3+1\Leftrightarrow3x>4\Leftrightarrow x>\dfrac{4}{3}\)

=> Đáp án C đúng

10 tháng 5 2019

Vẽ đồ thị:

- Vẽ đồ thị hàm số y = f(x) = x + 1 qua hai điểm (0; 1) và (-1; 0).

- Vẽ đồ thị hàm số y = g(x) = 3 - x qua hai điểm (0; 3) và (3; 0)

Giải bài 5 trang 106 SGK Đại Số 10 | Giải toán lớp 10

a) Nghiệm của phương trình f(x) = g(x) chính là hoành độ giao điểm của hai đường thẳng y = f(x) và y = g(x).

Giao điểm của hai đường thẳng y = x + 1 và y = 3 – x là điểm A(1; 2).

Do đó phương trình f(x) = g(x) có nghiệm x = 1.

Kiểm tra bằng tính toán:

f(x) = g(x) ⇔ x + 1 = 3 - x ⇔ 2x = 2 ⇔ x = 1.

b) Khi x > 1 thì đồ thị hàm số y = f(x) nằm phía trên đồ thị hàm số y = g(x), hay với x > 1 thì f(x) > g(x).

Kiểm tra bằng tính toán:

f(x) > g(x) ⇔ x + 1 > 3 - x ⇔ 2x > 2 ⇔ x > 1.

c) Khi x < 1 thì đồ thị hàm số y = f(x) nằm phía dưới đồ thị hàm số y = g(x), hay với x < 1 thì f(x) < g(x).

Kiểm tra bằng tính toán:

f(x) < g(x) ⇔ x + 1 < 3 - x ⇔ 2x < 2 ⇔ x < 1.

18 tháng 3 2022

A

18 tháng 3 2022

cho mình xin lời giải chi tiết nha

NV
13 tháng 12 2020

1.

\(2x+1\ge0\Rightarrow x\ge-\dfrac{1}{2}\)

Khi đó pt đã cho tương đương:

\(x^2+2x+2m=\left(2x+1\right)^2\)

\(\Leftrightarrow x^2+2x+2m=4x^2+4x+1\)

\(\Leftrightarrow3x^2+2x+1=2m\)

Xét hàm \(f\left(x\right)=3x^2+2x+1\) trên \([-\dfrac{1}{2};+\infty)\)

\(-\dfrac{b}{2a}=-\dfrac{1}{3}< -\dfrac{1}{2}\)

\(f\left(-\dfrac{1}{2}\right)=\dfrac{3}{4}\) ; \(f\left(\dfrac{1}{3}\right)=\dfrac{2}{3}\)

\(\Rightarrow\) Pt đã cho có 2 nghiệm pb khi và chỉ khi \(\dfrac{2}{3}< 2m\le\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{1}{3}< m\le\dfrac{3}{8}\)

\(\Rightarrow P=\dfrac{1}{8}\)

NV
13 tháng 12 2020

3.

Đặt \(x^2=t\ge0\Rightarrow\left[{}\begin{matrix}x=\sqrt{t}\\x=-\sqrt{t}\end{matrix}\right.\)

Pt trở thành: \(t^2-3mt+m^2+1=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=9m^2-4\left(m^2+1\right)>0\\t_1+t_2=3m>0\\t_1t_2=m^2+1>0\end{matrix}\right.\) \(\Rightarrow m>\dfrac{2}{\sqrt{5}}\)

Ta có:

\(M=x_1+x_2+x_3+x_4+x_1x_2x_3x_4\)

\(=-\sqrt{t_1}-\sqrt{t_2}+\sqrt{t_1}+\sqrt{t_2}+\left(-\sqrt{t_1}\right)\left(-\sqrt{t_2}\right)\sqrt{t_1}.\sqrt{t_2}\)

\(=t_1t_2=m^2+1\) với \(m>\dfrac{2}{\sqrt{5}}\)