Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: D.
Xét hàm số
Ta có: y' = x 2 - mx = 0 ⇔ x = 0 hoặc x = 3
Nếu m = 0: Phương trình thành x 3 /3 - 5 = 0, có nghiệm duy nhất.
Nếu m ≠ 0: Phương trình đã cho có nghiệm duy nhất khi và chỉ khi cực đại và cực tiểu của hàm số
cùng dấu.
Đáp án D.
Điều kiện cần để phương trình f
Do thay x bởi –x thì phương trình không đổi nên điều kiện cần để phương trình có nghiệm duy nhất là x = 0 => m = –1
Thử lại với m = –1 thỏa mãn nên D đúng.
Đáp án: B.
Với m = 0, phương trình 2 x 3 - 5 = 0 có nghiệm duy nhất.
Với m ≠ 0, đồ thị hàm số y = 2 x 3 + 3m x 2 - 5 chỉ cắt Ox tại một điểm khi y CĐ . y CT > 0. Ta có y' = 6 x 2 + 6mx = 6x(x + m) = 0 có hai nghiệm là x = 0, x = -m; y(0) = -5, y(-m) = -2 m 3 + 3 m 3 - 5 = m 3 - 5.
Suy ra y(0).y(-m) = -5( m 3 - 5) > 0 ⇔ m < 5 3
Chọn D.
Đặt t = 3x > 0, phương trình trở thành t2 - (m - 1) t + 2m = 0 (*)
Yêu cầu bài toán thành phương trình (*) có đúng một nghiệm dương.
+ (*) có nghiệm kép dương
+ (*) có hai nghiệm trái dấu khi đó; 2m < 0 hay m < 0.
Vậy m < 0 hoặc thỏa yêu cầu bài toán.
Đáp án: B.
Các phương trình còn lại có nhiều hơn một nghiệm:
(x - 5)( x 2 - x - 12) = 0 có các nghiệm x = 5, 4, -3.
sin 2 x - 5sinx + 4 = 0 ⇔ sinx = 1, có vô số nghiệm
sinx - cosx + 1 = 0 có các nghiệm x = 0, x = 3 π /2