K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2020

Bài giải:

https://scontent-hkt1-1.xx.fbcdn.net/v/t1.15752-9/96548740_1127409560949458_7352362129552310272_n.png?_nc_cat=109&_nc_sid=b96e70&_nc_ohc=P0mwny3fohMAX8mFLYM&_nc_ht=scontent-hkt1-1.xx&oh=c7b8ce65257bcaec845cbc40a03436cc&oe=5EDC5982

9 tháng 5 2020

\(\Leftrightarrow P=\left(\frac{1}{3}x^2y-\frac{1}{3}x^2y\right)+\left(xy^2+\frac{1}{2}xy^2\right)-\left(xy+5xy\right)\)

\(\Leftrightarrow P=\frac{3}{2}xy^2-6xy\)

Thay \(x=0,5;y=1\)vaof  P; dc:

\(P=\frac{3}{2}\cdot0,5-6.0,5=\frac{1}{2}\left(\frac{3}{2}-\frac{12}{2}\right)=\frac{1}{2}\cdot\frac{-9}{2}=-\frac{9}{4}\)

13 tháng 2 2022

\(P=\dfrac{1}{3}x^2y+xy^2-xy+\dfrac{1}{2}xy^2-5xy-\dfrac{1}{3}x^2y=\dfrac{3}{2}xy^2-6xy\)

Thay x = 2 ; y = 1 ta được 

\(\dfrac{3}{2}.2.1-6.2.1=3-12=-9\)

13 tháng 2 2022

Thank you..

\(Q=x^2+2xy+\left(-3x^3+3x^3\right)+\left(2y^3-y^3\right)=x^2+2xy+y^3\)

\(P=\left(\dfrac{1}{3}x^2y-\dfrac{1}{3}x^2y\right)+\left(xy^2+\dfrac{1}{2}xy^2\right)-\left(xy+5xy\right)=\dfrac{3}{2}xy^2-6xy\)

a: Ta có: M+N

\(=-xy^2+3x^2y-x^2y^2+\dfrac{1}{2}x^2y-xy^2+\dfrac{-2}{3}x^2y^2\)

\(=-2xy^2+\dfrac{7}{2}x^2y-\dfrac{5}{3}x^2y^2\)

b: Ta có: N-Q=M

nên \(Q=N-M\)

\(=\dfrac{1}{2}x^2y-xy^2-\dfrac{2}{3}x^2y^2+xy^2-3x^2y+x^2y^2\)

\(=\dfrac{-5}{2}x^2y+\dfrac{1}{3}x^2y^2\)

22 tháng 8 2021

a) \(M+N=-xy^2+3x^2y-x^2y^2+\dfrac{1}{2}x^2y-xy^2-\dfrac{2}{3}x^2y^2=\dfrac{7}{2}x^2y-2xy^2-\dfrac{5}{3}x^2y^2\)b) \(N-Q=M\Rightarrow Q=N-M=\dfrac{1}{2}x^2y-xy^2-\dfrac{2}{3}x^2y^2+xy^2-3x^2y+x^2y^2=-\dfrac{5}{2}x^2y+\dfrac{1}{3}x^2y^2\)c) \(Q=-\dfrac{5}{2}x^2y+\dfrac{1}{3}x^2y^2=-\dfrac{5}{2}.\left(-1\right)^2.\dfrac{1}{2}+\dfrac{1}{3}.\left(-1\right)^2.\left(\dfrac{1}{2}\right)^2=-\dfrac{7}{6}\)

a: \(A=x^2+2xy+y^3=5^2+2\cdot5\cdot4+4^3=129\)

b: \(B=\left(-1\right)\cdot\left(-1\right)-\left(-1\right)^2\cdot\left(-1\right)^2+\left(-1\right)^4\cdot\left(-1\right)^4-\left(-1\right)^6\cdot\left(-1\right)^6=1-1+1-1=0\)

23 tháng 2 2022

Thanks

 

25 tháng 5 2020

a ) A = M + N = ( 2x2y - xy2 + 3x - 2y ) + ( 2xy2 - 2x2y - 5x + 2y )

                      =  2x2y - xy2 + 3x - 2y + 2xy2 - 2x2y - 5x + 2y 

                      =  ( 2x2y - 2x2y ) + ( -xy2 + 2xy2 ) + ( 3x - 5x ) + ( - 2y + 2y )

                      =   0 + ( -1 +2 ) xy2 + ( 3 - 5 )x + 0

                      =  xy2 - 2x

     Vậy A = M + N = xy2 - 2x

    B = N - M =  2xy2 - 2x2y - 5x + 2y - ( 2x2y - xy2 + 3x - 2y )

                    =    2xy2 - 2x2y - 5x + 2y - 2x2y + xy2 - 3x + 2y 

                    =  ( 2xy2 + xy2 ) + ( -2x2y - 2x2y ) + ( - 5x - 3x ) + (  2y + 2y )

                    =  ( 2 + 1 )xy2 + ( -2 - 2 )x2y  + ( - 5 - 3 )x  + (  2 + 2 )y 

                    =  3xy2 - 4x2y  - 8x  + 4y 

 Vậy B = 3xy2 - 4x2y  - 8x  + 4y 

6 tháng 6 2020

A=\(\left(\frac{2}{5}xy+3x^2y^3-4xy^3\right)-\left(-x^2y^3+xy^3+\frac{2}{5}xy\right)+5\)

A=\(\frac{2}{5}xy+3x^2y^3-4xy^3+x^2y^3-xy^3-\frac{2}{5}xy+5\)

A=\(\left(\frac{2}{5}xy-\frac{2}{5}xy\right)+\left(3x^2y^3+x^2y^3\right)+\left(-4xy^3-xy^3\right)+5\)

A=\(4x^2y^3-5xy^3+5\)

Thay \(x=\frac{1}{2}\)\(y=-1\) vào đa thức A, ta được:

\(4.\left(\frac{1}{2}\right)^2.\left(-1\right)^3-5.\left(\frac{1}{2}\right).\left(-1\right)^3+5\)

=\(4.\frac{1}{4}.\left(-1\right)-5.\frac{1}{2}.\left(-1\right)+5\)

=\(\left(-1\right)-\left(-\frac{5}{2}\right)+5\)

= \(\frac{3}{2}+5=\frac{13}{2}\)

Vậy giá trị của đa thức A tại \(x=\frac{1}{2}\)\(y=-1\)\(\frac{13}{2}\)

Nhớ tick cho mình nha!haha

6 tháng 5 2020

Nguyễn Trúc Giang Hic .. Đúng ròi đóa cậu ơi :)) ko chắc j nữa :>>

\n
6 tháng 5 2020

Miyuki Misaki thì cậu cug ko chắc giống mik còn gì ? \"haha\"

\n
13 tháng 8 2015

M = 5xy^2 - 3x^2y + 4 + 3xy(x+y)

   = 5xy^2 - 3x^2y + 4 + 3x^2y + 3xy^2

  = 8xy^2 + 4

M = -6xy^2 ( x^2y - 1/2xy) - 3xy( x^2 y^2 + xy )

   = -6x^3y^3 + 3 x^2y^3 - 3x^3y^3 - 3x^2y^2 

  = -9x^3y^3 + 3x^2y^3 - 3x^2y^2 

4 tháng 6 2020

a) M - 3xy(x+y) = 5xy2 - 3x2y + 4

<=> M - ( 3x2y + 3xy2 ) = 5xy2 - 3x2y + 4

<=> M = 5xy2 - 3x2y + 4 + 3x2y + 3xy2

<=> M = 8xy2 + 4

b) -6xy2 ( x2y - 1/2xy ) - M = 3xy(x2y2 + xy)

<=> -6x3y3 + 3x2y3 - M = 3x3y3 + 3x2y2

<=> M = ( -6x3y3 + 3x2y3 ) - ( 3x3y3 + 3x2y2 )

<=> M = -6x3y3 + 3x2y3 - 3x3y3 - 3x2y2

<=> M = -9x3y3 + 3x2y3 - 3x2y2