Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{12}+3\sqrt{15}-4\sqrt{135}\right)\sqrt{3}\)
\(=\left(2\sqrt{3}+3\sqrt{15}-12\sqrt{15}\right)\sqrt{3}\)
\(=\left(2\sqrt{3}-9\sqrt{15}\right)\sqrt{3}\)
\(=6-9\sqrt{45}\)
\(a.\left(\sqrt{12}+3\sqrt{15}-4\sqrt{135}\right)\sqrt{3}=\left(2\sqrt{3}+3\sqrt{15}-12\sqrt{15}\right)\sqrt{3}=2.3-9\sqrt{9.5}=6-27\sqrt{5}\) \(b.\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}=\sqrt{36.7}-\sqrt{100.7}+\sqrt{144.7}-\sqrt{64.7}=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}=0\)
a)\(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right)\div\sqrt{15}=\left(2\sqrt{3}+5\sqrt{3}+3\sqrt{3}\right)\div\sqrt{3}\sqrt{5}=10\sqrt{3}\div\sqrt{3}\sqrt{5}=\sqrt{2}\sqrt{5}\div\sqrt{5}=\sqrt{2}\)b)\(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}=\sqrt{4}\sqrt{9}\sqrt{7}-\sqrt{100}\sqrt{7}+\sqrt{16}\sqrt{9}\sqrt{7}-\sqrt{64}\sqrt{7}=2\cdot3\cdot\sqrt{7}-10\cdot\sqrt{7}+4\cdot3\cdot\sqrt{7}-8\sqrt{7}=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}=0\)
c)\(\sqrt{27^2-23^2}+\sqrt{37^2-35^2}=\sqrt{\left(27-23\right)\left(27+23\right)}+\sqrt{\left(37-35\right)\left(37+35\right)}=\sqrt{4\cdot50}\cdot\sqrt{2\cdot72}=\sqrt{4\cdot50\cdot2\cdot72}=\sqrt{2^2\cdot2\cdot25\cdot2\cdot36\cdot2}=\sqrt{16}\cdot\sqrt{25}\cdot\sqrt{36}=4\cdot5\cdot6=120\)
d)\(\left(\sqrt{\dfrac{1}{7}}+\sqrt{\dfrac{16}{7}}+\sqrt{\dfrac{9}{7}}\right)\div\sqrt{7}=\left(\dfrac{1}{\sqrt{7}}+\dfrac{4}{\sqrt{7}}+\dfrac{3}{\sqrt{7}}\right)\cdot\dfrac{1}{\sqrt{7}}=\dfrac{7}{\sqrt{7}}\cdot\dfrac{1}{\sqrt{7}}=1\)
\(A=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{3x^2+6xy+3y^2}{4}}=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{3\left(x^2++2xy+y^2\right)}{4}}=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{3\left(x-y\right)^2}{4}}=\dfrac{2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\sqrt{3}\left(x-y\right)}{2}=\dfrac{\sqrt{3}}{x+y}\)
\(B=\dfrac{1}{2a-1}\cdot\sqrt{5a^4\left(1-4a+4a^2\right)}=\dfrac{1}{2a-1}\cdot\sqrt{5a^4\left(2a-1\right)^2}=\dfrac{1}{2a-1}\cdot\sqrt{5}a^2\left(2a-1\right)=\sqrt{5}\cdot a^2\)
c.√252−√700+√1008−√448
\(=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}\)
=(6-10+12-8)\(\sqrt{7}\)
=0
Ối giời! Bấm máy tính đi bn! Người ta sinh ra cái máy tính là để làm mấy việc này mà. :D
Thông Ngô lần sau đăng ít thôi bạn ơi, nhiều quá không ai làm đc đâu
\(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)
\(=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}=0\)
1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)
Thay \(x=\frac{1}{9}\) vào A ta có:
\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)
2. \(B=...\)
\(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{\sqrt{x}+3}{-6}\)
Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)
hay \(P\le-\frac{1}{2}\)
Dấu "=" xảy ra <=> x=0
a)
\(\sqrt{12}-\sqrt{27}+\sqrt{3}=\sqrt{4}.\sqrt{3}-\sqrt{9}.\sqrt{3}+\sqrt{3}=2\sqrt{3}-3\sqrt{3}+\sqrt{3}\)
\(=\sqrt{3}(2-3+1)=0\)
b)
\(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}=\sqrt{4}.\sqrt{63}-\sqrt{4}.\sqrt{175}+\sqrt{4}.\sqrt{252}-\sqrt{4}.\sqrt{112}\)
\(=2(\sqrt{63}-\sqrt{175}+\sqrt{252}-\sqrt{112})\)
\(=2(\sqrt{9}.\sqrt{7}-\sqrt{25}.\sqrt{7}+\sqrt{36}.\sqrt{7}-\sqrt{16}.\sqrt{7})\)
\(=2(3\sqrt{7}-5\sqrt{7}+6\sqrt{7}-4\sqrt{7})=2\sqrt{7}(3-5+6-4)=0\)
------------------
\(\sqrt{3}(\sqrt{12}+\sqrt{27}-\sqrt{3})=\sqrt{36}+\sqrt{81}-\sqrt{9}\)
\(=\sqrt{6^2}+\sqrt{9^2}-\sqrt{3^2}=6+9-3=12\)
c)
\(\frac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}=\frac{\sqrt{2}.\sqrt{3}+\sqrt{2}.\sqrt{5}}{\sqrt{7}.\sqrt{3}+\sqrt{7}.\sqrt{5}}=\frac{\sqrt{2}(\sqrt{3}+\sqrt{5})}{\sqrt{7}(\sqrt{3}+\sqrt{5})}=\frac{\sqrt{2}}{\sqrt{7}}\)
\(\frac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}=\frac{\sqrt{81}.\sqrt{5}+3\sqrt{9}.\sqrt{3}}{3\sqrt{3}+\sqrt{9}.\sqrt{5}}=\frac{9\sqrt{5}+9\sqrt{3}}{3\sqrt{3}+3\sqrt{5}}\)
\(=\frac{3(3\sqrt{5}+3\sqrt{3})}{3\sqrt{3}+3\sqrt{5}}=3\)
d)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-(\sqrt{6}+\sqrt{9}+\sqrt{12})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-(\sqrt{2}.\sqrt{3}+\sqrt{3}.\sqrt{3}+\sqrt{3}.\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{3}(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})(1-\sqrt{3})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1-\sqrt{3}\)
a) \(2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=2\sqrt{3}+2-\sqrt{3}\)
\(=\left(2\sqrt{3}-\sqrt{3}\right)+2\)
\(=\sqrt{3}+2\)
b) \(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
\(=\frac{1+\sqrt{5}}{\sqrt{5}-1}+\frac{\sqrt{5}-1}{1+\sqrt{5}}\)
\(=\frac{\left(\sqrt{5}+1\right)^2}{\left(\sqrt{5}-1\right)\left(1+\sqrt{5}\right)}+\frac{\left(\sqrt{5}-1\right)^2}{\left(\sqrt{5}-1\right)\left(1+\sqrt{5}\right)}\)
\(=\frac{\left(\sqrt{5}+1\right)^2+\left(\sqrt{5}-1\right)^2}{\left(\sqrt{5}-1\right)\left(1+\sqrt{5}\right)}\)
\(=\frac{12}{4}=3\)
c) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}\)
\(=\frac{7-4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}+\frac{7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
\(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
\(=\frac{14}{1}=14\)
a: \(=\dfrac{2\sqrt{7}+10-2\sqrt{7}+10}{7-25}=\dfrac{20}{-18}=\dfrac{-10}{9}\) là số hữu tỉ
b: \(=\dfrac{12+2\sqrt{35}+12-2\sqrt{35}}{2}=\dfrac{24}{2}=12\) là số hữu tỉ
Bài 1:
a) Sửa đề: \(\left(\sqrt{12}+3\sqrt{5}-4\sqrt{135}\right)\cdot\sqrt{3}\)
Ta có: \(\left(\sqrt{12}+3\sqrt{5}-4\sqrt{135}\right)\cdot\sqrt{3}\)
\(=\sqrt{12}\cdot\sqrt{3}+3\sqrt{5}\cdot\sqrt{3}-4\sqrt{135}\cdot\sqrt{3}\)
\(=6+3\sqrt{15}-36\sqrt{5}\)
b) Ta có: \(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)
\(=3\sqrt{28}-5\sqrt{28}+3\sqrt{112}-2\sqrt{112}\)
\(=-2\sqrt{28}+\sqrt{112}=-\sqrt{112}+\sqrt{112}=0\)
c) Ta có: \(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)
\(=2\cdot4\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}-2\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}-3\cdot2\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}\)
\(=8\sqrt{5}\cdot\sqrt{\sqrt{3}}-2\sqrt{5}\sqrt{\sqrt{3}}-6\sqrt{5}\sqrt{\sqrt{3}}\)
=0
Bài 2:
a) Ta có: \(A=\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
\(=\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}\)
\(=\frac{1}{\sqrt{2}}\)
b) Ta có: \(B=\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}\)
\(=\frac{\sqrt{405}+\sqrt{243}}{\sqrt{5}+\sqrt{3}}\)
\(=\frac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)
c) Ta có: \(C=\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
\(=\frac{\sqrt{72}-\sqrt{48}+\sqrt{20}}{\sqrt{162}-\sqrt{108}+\sqrt{45}}\)
\(=\frac{2\left(\sqrt{18}-\sqrt{12}+\sqrt{5}\right)}{3\left(\sqrt{18}-\sqrt{12}+\sqrt{5}\right)}=\frac{2}{3}\)