Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=78/35
b=22/12
c=1/1
d=40202090/4040090
e=1,24025667172...
f=871,82
ko biết đúng ko [0_0'] hihi
Giải:
\(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+\dfrac{2}{99}+\dfrac{2}{143}\)
\(=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\)
\(=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\)
\(=\dfrac{1}{1}-\dfrac{1}{13}\)
\(=\dfrac{12}{13}\)
Chúc em học tốt!
2/3+2/15+2/35+2/63+2/99+2/143
=2(1/1x3+1/3x5+1/5x7+1/7x9+1/9x11+1/11x13)
=2(1-1/3+1/3-1/5+1/5-....+1/13)
=2(1-1/13)
=2.12/13=24/13
Đ/S: \(\frac{45}{11}\)
k đúng cho mình nha!!
chúc bạn hk tốt nhé!!
Đặt biểu thực là A
2A = \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{21.23}\)
= \(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{21}-\dfrac{1}{23}=1-\dfrac{1}{23}=\dfrac{22}{23}\)
=> A = \(\dfrac{11}{23}\)
A = \(\dfrac{2}{35}\) + \(\dfrac{4}{77}\) + \(\dfrac{2}{143}\) + \(\dfrac{4}{221}\) + \(\dfrac{2}{323}\) + \(\dfrac{4}{437}\) + \(\dfrac{2}{575}\)
A = \(\dfrac{2}{5\times7}\)+\(\dfrac{4}{7\times11}\)+\(\dfrac{2}{11\times13}\)+\(\dfrac{4}{13\times17}\)+\(\dfrac{2}{17\times19}\)+\(\dfrac{4}{19\times23}\)+\(\dfrac{2}{23\times25}\)
A = \(\dfrac{1}{5}\)-\(\dfrac{1}{7}\)+ \(\dfrac{1}{7}\) - \(\dfrac{1}{11}\)+\(\dfrac{1}{11}\)-\(\dfrac{1}{13}\)+\(\dfrac{1}{13}\)-\(\dfrac{1}{17}\)+\(\dfrac{1}{17}\)-\(\dfrac{1}{19}\)+\(\dfrac{1}{19}\)-\(\dfrac{1}{23}\)+\(\dfrac{1}{23}\)-\(\dfrac{1}{25}\)
A = \(\dfrac{1}{5}\) - \(\dfrac{1}{25}\)
A = \(\dfrac{4}{25}\)
\(=\dfrac{3}{4}-\dfrac{5}{6}\times\dfrac{7}{24}\times\dfrac{12}{7}=\dfrac{3}{4}-\dfrac{5}{12}=\dfrac{1}{3}\)
\(\dfrac{3}{4}-\dfrac{5}{6}\left(\dfrac{1}{6}+\dfrac{1}{8}\right):\dfrac{7}{12}\)
\(=\dfrac{3}{4}-\dfrac{5}{6}\cdot\dfrac{7}{24}\cdot\dfrac{12}{7}\)
\(=\dfrac{3}{4}-\dfrac{5}{12}\)
\(=\dfrac{4}{12}=\dfrac{1}{3}\)
\(\dfrac{5}{8}:\dfrac{3}{4}-\dfrac{1}{6}=\dfrac{5}{8}\times\dfrac{4}{3}-\dfrac{1}{6}=\dfrac{5}{6}-\dfrac{1}{6}=\dfrac{4}{6}=\dfrac{2}{3}\)
\(\left(\dfrac{3}{14}+\dfrac{1}{2}\right)\times\dfrac{7}{5}=\left(\dfrac{3}{14}+\dfrac{7}{14}\right)\times\dfrac{7}{15}=\dfrac{10}{14}\times\dfrac{7}{15}=\dfrac{5}{7}\times\dfrac{7}{15}=\dfrac{5}{12}=\dfrac{1}{3}\)
\(\dfrac{1}{3}+\dfrac{13}{15}+\dfrac{33}{35}+\dfrac{61}{63}+\dfrac{97}{99}\)
\(=\left(1-\dfrac{2}{3}\right)+\left(1-\dfrac{2}{15}\right)+\left(1-\dfrac{2}{35}\right)+\left(1-\dfrac{2}{63}\right)+\left(1-\dfrac{2}{99}\right)\)
\(=\left(1+1+1+1+\right)-\left(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+\dfrac{2}{99}\right)\)
\(=5-\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}\right)\)
\(=5-\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{9}-\dfrac{1}{11}\right)\)
\(=5-\left(1-\dfrac{1}{11}\right)\)
\(=5-\dfrac{10}{11}\)
\(=\dfrac{45}{11}\)