Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp:
+) Từ giả thiết , tìm ra đường biểu diễn (C) của các số phức z.
+) Gọi A, B lần lượt là điểm biểu diễn của
vị trí của AB đối với đường tròn (C).
+) Sử dụng công thức trung tuyến tính O A 2 + O B 2
+) Sử dụng BĐT Bunhiascopsky tìm GTLN của OA+OB
Cách giải:
Ta có:
với
M(x;y) biểu diễn z thuộc đường tròn tâm I( 1 ; 2 )bán kính R=1.
Lại có:
Mặt khác theo công thức trung tuyến ta có:
Theo BĐT Bunhiascopsky ta có:
Đáp án D.
Ta có:
=> M(x;y) biểu diễn z thuộc đường tròn tâm I(1; 2 ) bán kính R = 1
Giả sử => AB = 2 = 2R nên B là đường kính của đường tròn (I;R)
Lại có: | z 1 | + | z 2 | = OA + OB
Mặt khác theo công thức trung tuyến ta có:
Theo BĐT Bunhiascopky ta có:
Đáp án C
HD: Ta có
Tập hợp điểm M(z) là đường tròn tâm I(3;-2), R=3.
Gọi A(1;2), B(5;2) và E(3;2) là trung điểm của AB suy ra P=MA+MB
Lại có
P lớn nhất ME lớn nhất.
Mà
Vậy
Đáp án D