Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{z}{\left(x+y+z\right).z}-\frac{x+y+z}{z.\left(x+y+z\right)}=\frac{-x-y}{z.\left(x+y+z\right)}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{x+y}{-z.\left(x+y+z\right)}\)
TH1: x+y=0
=> x=-y => P=0
TH2: xy=-z.(x+y+z)
\(\Leftrightarrow xy=-xz-zy-z^2\Leftrightarrow xy+xz+zy+z^2=0\Leftrightarrow x.\left(y+z\right)+z.\left(y+z\right)=0\)
\(\Leftrightarrow\left(x+z\right).\left(y+z\right)=0\Leftrightarrow\orbr{\begin{cases}x=-z\\y=-z\end{cases}\Rightarrow P=0}\)
Ta có : \(\frac{x^3}{z+x^2}=\frac{x^3+xz-xz}{z+x^2}=x-\frac{xz}{z+x^2}\ge x-\frac{xz}{2x\sqrt{z}}=x-\frac{\sqrt{z}}{2}\ge x-\frac{z+1}{4}\) (Cosi)
Tương tự \(\hept{\begin{cases}\frac{y^3}{x+y^2}\ge y-\frac{x+1}{4}\\\frac{z^3}{y+z^2}\ge z-\frac{y+1}{4}\end{cases}}\)
\(\Rightarrow\frac{x^3}{z+x^2}+\frac{y^3}{x+y^2}+\frac{z^3}{y+z^2}\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\)
Mà \(xy+yz+xz=3xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\Rightarrow x+y+z\ge3\)
\(\Rightarrow\frac{x^3}{z+x^2}+\frac{y^3}{x+y^2}+\frac{z^3}{y+z^2}\ge\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
bước cuối sai \(\frac{3}{2}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) trong khi \(3\le x+y+z\) ?? :D
\(Q=\left(1+\frac{\alpha}{x}\right)\left(1+\frac{\alpha}{y}\right)\left(1+\frac{\alpha}{z}\right)=\left(\frac{\alpha+x}{x}\right)\left(\frac{\alpha+y}{y}\right)\left(\frac{\alpha+z}{z}\right)\)
Mà \(\alpha=x+y+z\) (theo gt) nên ta có thể viết \(Q\) như sau:
\(Q=\left(\frac{2x+y+z}{x}\right)\left(\frac{x+2y+z}{y}\right)\left(\frac{x+y+2z}{z}\right)=\left(2+\frac{y+z}{x}\right)\left(2+\frac{x+z}{y}\right)\left(2+\frac{x+y}{z}\right)\)
Đặt \(a=\frac{y+z}{x};\) \(b=\frac{x+z}{y};\) và \(c=\frac{x+y}{z}\) \(\Rightarrow\) \(a,b,c>0\)
Khi đó, biểu thức \(Q\) được biểu diễn theo ba biến \(a,b,c\) như sau:
\(Q=\left(2+a\right)\left(2+b\right)\left(2+c\right)=4\left(a+b+c\right)+2\left(ab+bc+ca\right)+abc+8\)
\(\Rightarrow\) \(Q-8=4\left(a+b+c\right)+2\left(ab+bc+ca\right)+abc\)
Mặt khác, ta lại có:
\(a+b+c=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\)
nên \(a+b+c+3=\frac{y+z}{x}+1+\frac{x+z}{y}+1+\frac{x+y}{z}+1\)
\(\Rightarrow\) \(a+b+c+3=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Lại có: \(\hept{\begin{cases}x+y+z\ge3\sqrt[3]{xyz}\text{ (1)}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\text{ (2)}\end{cases}}\) (theo bđt \(Cauchy\) lần lượt cho hai bộ số gồm các số không âm)
Nhân hai bđt \(\left(1\right);\) và \(\left(2\right)\) vế theo vế, ta được bđt mới là:
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
Theo đó, \(a+b+c+3\ge9\) tức là \(a+b+c\ge6\)
\(\Rightarrow\) \(4\left(a+b+c\right)\ge24\) \(\left(\alpha\right)\)
Bên cạnh đó, ta cũng sẽ chứng minh \(abc\ge8\) \(\left(\beta\right)\)
Thật vậy, ta đưa vế trái bđt cần chứng minh thành một biểu thức mới.
\(VT\left(\beta\right)=abc=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}}{xyz}=\frac{8xyz}{xyz}=8=VP\left(\beta\right)\)
Vậy, bđt \(\left(\beta\right)\) được chứng minh.
Từ đó, ta có thể rút ra được một bđt mới.
\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\ge3\sqrt[3]{8^2}=12\) (theo cách dẫn trên)
\(\Rightarrow\) \(2\left(ab+bc+ca\right)\ge24\) \(\left(\gamma\right)\)
Cộng từng vế 3 bđt \(\left(\alpha\right);\) \(\left(\beta\right)\) và \(\left(\gamma\right)\), ta được:
\(Q-8\ge24+8+24=56\)
Do đó, \(Q\ge64\)
Dấu \("="\) xảy ra khi và chỉ khi \(a=b=c\) \(\Leftrightarrow\) \(x=y=z=2\)
Vậy, \(Q_{min}=64\) khi \(\alpha=6\)
Bai 1: Ap dung BDT Bunhiacopxki ta co:
\(ax+by+cz+2\sqrt {(ab+ac+bc)(xy+yz+xz)} \)
\(≤ \sqrt {(a^2+b^2+c^2)(x^2+y^2+z^2)} + \sqrt {(ab+ac+bc)(xy+yz+zx)}+\sqrt {(ab+ac+bc)(xy+yz+zx)}\)
\(≤ \sqrt {(a^2+b^2+c^2+2ab+2ac+2bc)(x^2+y^2+z^2+2xy+2yz+2zx)}\)
\(= (a+b+c)(x+y+z)\)
=> \(Q.E.D\)
Tiep bai 4:Ta co:
BDT <=> \((2+y^2z)(2+z^2x)(2+x^2y)≥(2+x)(2+y)(2+z)\)
Sau khi khai trien con: \(2(z^2x+y^2z+x^2y)+x^2z+z^2y+y^2x≥xy+yz+zx+2x+2y+2z \)
Ap dung BDT Cosi ta co:
\(z^2x+x ≥ 2zx \) <=> \(z^2x≥2zx-x\)
Lam tuong tu ta co: \(2(z^2x+y^2z+x^2y)≥4xy+4yz+4zx-2x-2y-2z \)(1)
\(x^2z+{1\over z}≥2x \) <=> \(x^2z≥2x-xy \) (do xyz=1)
Lam tuong tu ta co: \(x^2z+z^2y+y^2x≥ 2y+2z+2x-xy-yz-zx\)(2)
Cong (1) voi (2) ta co: VT\(≥ 3(xy+yz+zx)\)(*)
Voi cach lam tuong tu ta cung duoc: VT\(≥ 3(x+y+z) \)(**)
Tu (*) va (**) suy ra : \(3 \)VT \(≥ 6(x+y+z)+3(xy+yz+zx) \)
<=> VT \(≥ 2(x+y+z)+xy+yz+zx\)
=> \(Q.E.D\)