Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi J là vị trí âm thanh phát đi. Ta có J cách đều O, A, B. Do đó J là giao của hài đường trun trực \({d_1},{d_2}\) tương ứng của OA, OB. Đường thẳng \({d_1}\) đi qua trung điểm M của OA và vuông góc với OA. Ta có \(M\left( {\frac{1}{2};0} \right)\) và \(\overrightarrow {{n_{{d_1}}}} = \overrightarrow {OA} = \left( {1;0} \right)\).
Phương trình đường thẳng \({d_1}\) là \(1\left( {x - \frac{1}{2}} \right) + 0\left( {y - 0} \right) = 0 \Leftrightarrow x = \frac{1}{2}\).
Tương tự, phương trình đường thẳng \({d_2}\) là \(x + 3y - 5 = 0\).
Tọa độ điểm J là nghiệm của hệ \(\left\{ \begin{array}{l}x = \frac{1}{2}\\x + 3y - 5 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{1}{2}\\y = \frac{3}{2}\end{array} \right.\).
Vậy \(J\left( {\frac{1}{2};\frac{3}{2}} \right)\).
Gọi M là vị trí phát ra âm thanh cầu cứu trong rừng.
Gọi \({t_1},{t_2}\)lần lượt là thời gian trạm A, B nhận được tín hiệu cầu cứu (đơn vị: giây)
\( \Rightarrow {t_A} = {t_B} - 6 \Leftrightarrow {t_B} - {t_A} = 6\)
Đổi \(v = 1{\rm{ }}236{\rm{ }}km/h{\rm{ }} = \frac{{\;1236}}{{3600}}km/s = \frac{{103}}{{300}}km/s.\;\)
Ta có: \(MA = {t_A}.v;MB = {t_B}.v\)
\( \Rightarrow MB - MA = ({t_B} - {t_A}).v = 6.\frac{{103}}{{300}} = 2,06(km)\)
Như vậy, tập hợp các điểm M là một hypepol nhận A, B làm hai tiêu điểm.
Ta có: \(AB = 16 = 2c \Rightarrow c = 8\); \(\left| {MA - MB} \right| = 2,06 = 2a \Rightarrow a = 1,03\)
\( \Rightarrow {b^2} = {c^2} - {a^2} = {8^2} - 1,{03^2} = 62,9391\)
Vậy phương trình chính tắc của hypebol đó là: (H) \(\frac{{{x^2}}}{{1,0609}} - \frac{{{y^2}}}{{62,9391}} = 1\)
Do MA < MB nên M thuộc của nhánh (H) gần A.
Vậy phạm vi tìm kiếm vị trí phát ra âm thanh đó là nhánh gần A của hypebol (H) có phương trình \(\frac{{{x^2}}}{{1,0609}} - \frac{{{y^2}}}{{62,9391}} = 1\).
a) Ta có:
\(\overrightarrow {{F_1}M} = \left( {x + c;y} \right) \Rightarrow {F_1}M = \sqrt {{{\left( {x + c} \right)}^2} + {y^2}} \)
\(\overrightarrow {{F_2}M} = \left( {x - c;y} \right) \Rightarrow {F_2}M = \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} \)
b) Ta có \(M(x;y) \in (E)\) nên \(\left| {{F_1}M - {F_2}M} \right| = 2a \Leftrightarrow \left| {\sqrt {{{\left( {x + c} \right)}^2} + {y^2}} - \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} } \right| = 2a\)
a) Ta có:
\(\overrightarrow {{F_1}M} = \left( {x + c;y} \right) \Rightarrow {F_1}M = \sqrt {{{\left( {x + c} \right)}^2} + {y^2}} \)
\(\overrightarrow {{F_2}M} = \left( {x - c;y} \right) \Rightarrow {F_2}M = \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} \)
b) Ta có \(M(x;y) \in (E)\) nên \({F_1}M + {F_2}M = 2a \Leftrightarrow \sqrt {{{\left( {x + c} \right)}^2} + {y^2}} + \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} = 2a\)
a) Do \({A_1}{F_1} = a - c\) và \({A_1}{F_2} = a - c\) nện\({A_1}{F_1} + {A_1}{F_2} = 2a\).Vậy \({A_1}\left( { - a;{\rm{ }}0} \right)\) thuộc elip (E).
Mà A (-1; 0) thuộc trục Ox nên \({A_1}\left( { - a;{\rm{ }}0} \right)\) là giao điểm của elip (E) với trục Ox.
Tương tự, ta chứng minh được \({A_2}\left( {a;{\rm{ }}0} \right)\) là giao điểm của clip (E) với trục Ox.
b) Ta có:\({B_2}{F_2} = \sqrt {{{\left( {c - 0} \right)}^2} + {{\left( {0 - b} \right)}^2}} = \sqrt {{c^2} + {b^2}} = \sqrt {{a^2}} = a\).Vì \({B_2}{F_1} = {B_2}{F_2}\) nên\({B_2}{F_1} + {B_2}{F_2} = a + a = 2a\). Do đó, \({B_2}\left( {0{\rm{ }};{\rm{ }}b} \right)\) thuộc elip (E). Mà \({B_2}\left( {0{\rm{ }};{\rm{ }}b} \right)\)thuộc trục Oy nên \({B_2}\left( {0{\rm{ }};{\rm{ }}b} \right)\)là giao điểm của elip (E) với trục Oy.
Tương tự, ta chứng minh được: \({B_1}\left( {0{\rm{ }};{\rm{ - }}b} \right)\)là giao ddiemr của elip (E) với trục Oy.
Như vậy, elip (E) đi qua bốn điểm \({A_1}\left( { - a;{\rm{ }}0} \right)\)\({A_2}\left( {a{\rm{ }};{\rm{ }}0} \right)\)\({B_1}\left( {0; - {\rm{ }}b} \right)\)\({B_2}\left( {0;{\rm{ }}b} \right)\)
Ta có: \(M{F_1} = \sqrt {{{\left( {x + c} \right)}^2} + {y^2}} ,M{F_2} = \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} \).Vậy để điểm M thuộc Hyperbol khi và chỉ khi \(\left| {M{F_1} - M{F_2}} \right| = 2a\) hay\(\left| {\sqrt {{{\left( {x + c} \right)}^2} + {y^2}} - \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} } \right| = 2a\)
a) Đường vừa nhận được là đường “màu đỏ” trong Hình 7.17.
b) Tổng khoảng cách từ đẩu bút đến các vị trí không thay đổi.
Gọi M là vị trí tàu thu tín hiệu. Gọi \({t_A},{t_B}\) lần lượt là thời gian tín hiệu truyền từ trạm phát A,B đến M. Theo đề bài, ta có \({t_A} - {t_B} = - 0,0005s\).
Suy ra \(MA - MB = v.{t_A} - v.{t_B} = 292000.\left( { - 0,0005} \right) = - 146km\).
Gọi (H) là hyperbol ở dạng chính tắc nhận A,B làm hai tiêu điểm và đi qua M. Khi đó ta có:
\(\left\{ \begin{array}{l}2a = \left| {MA - MB} \right| = 146\\2c = AB = 300\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 73\\c = 150\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 73\\{b^2} = {c^2} - {a^2} = 17171\end{array} \right.\)
Vậy phương trình chính tắc của (H) là: \(\frac{{{x^2}}}{{5329}} - \frac{{{y^2}}}{{17171}} = 1\).
a) Tọa độ 2 tiêu điểm là: \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\).
b) Ta có: \(M{F_1} = \sqrt {{{\left( {x + c} \right)}^2} + {y^2}} ,M{F_2} = \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} \).Vậy để điểm M thuộc Elip thì khoảng cách\(M{F_1} + M{F_2} = 2a\) nên \(\sqrt {{{\left( {x + c} \right)}^2} + {y^2}} + \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} = 2a\)
a) Khoảng cách từ nơi phát ra tín hiệu âm thanh tới\({F_1},{F_2}\) là: \(M{F_1}, M{F_2}\) với M là điểm đặt thiết bị âm thanh.
Rõ ràng \(M{F_1} > M{F_2}\) do thiết bị tại \({F_2}\) nhận được tín hiệu sớm hơn.
b) Có liên quan.
Gọi t là thời gian thiết bị tại \({F_2}\) nhận được tín hiệu.
Ta có: \(M{F_2}=t.343\)
Tại \({F_1}\), thời gian thiết bị nhận được tín hiệu là: \(t+2\)
=> \(M{F_1}=(t+2).343\)
=> \(M{F_1} - M{F_2} =(t+2).343 - t.343=2.343=686\)
Vậy tập hợp các điểm M mà tại đó phát ra tín hiệu âm thanh để thiết bị tại \({F_2}\) nhận được sớm hơn 2 giây thỏa mãn \(M{F_1} - M{F_2} =686\)