K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Khoảng cách từ nơi phát ra tín hiệu âm thanh tới\({F_1},{F_2}\) là: \(M{F_1}, M{F_2}\)  với M là điểm đặt thiết bị âm thanh.

Rõ ràng \(M{F_1} > M{F_2}\) do thiết bị tại \({F_2}\) nhận được tín hiệu sớm hơn.

b) Có liên quan.

Gọi t là thời gian thiết bị tại \({F_2}\) nhận được tín hiệu.

Ta có: \(M{F_2}=t.343\)

Tại \({F_1}\), thời gian thiết bị nhận được tín hiệu là: \(t+2\)

=> \(M{F_1}=(t+2).343\)

=> \(M{F_1} -  M{F_2} =(t+2).343 - t.343=2.343=686\)

Vậy tập hợp các điểm M mà tại đó phát ra tín hiệu âm thanh để thiết bị tại \({F_2}\) nhận được sớm hơn 2 giây thỏa mãn \(M{F_1} -  M{F_2} =686\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Gọi J là vị trí âm thanh phát đi. Ta có J cách đều O, A, B. Do đó J là giao của hài đường trun trực \({d_1},{d_2}\) tương ứng của OA, OB. Đường thẳng \({d_1}\) đi qua trung điểm M của OA và vuông góc với OA. Ta có \(M\left( {\frac{1}{2};0} \right)\) và \(\overrightarrow {{n_{{d_1}}}}  = \overrightarrow {OA}  = \left( {1;0} \right)\).

Phương trình đường thẳng \({d_1}\) là \(1\left( {x - \frac{1}{2}} \right) + 0\left( {y - 0} \right) = 0 \Leftrightarrow x = \frac{1}{2}\).

Tương tự, phương trình đường thẳng \({d_2}\) là \(x + 3y - 5 = 0\).

Tọa độ điểm J là nghiệm của hệ \(\left\{ \begin{array}{l}x = \frac{1}{2}\\x + 3y - 5 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{1}{2}\\y = \frac{3}{2}\end{array} \right.\).

Vậy \(J\left( {\frac{1}{2};\frac{3}{2}} \right)\).

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Gọi M là vị trí phát ra âm thanh cầu cứu trong rừng.

Gọi \({t_1},{t_2}\)lần lượt là thời gian trạm A, B nhận được tín hiệu cầu cứu (đơn vị: giây)

\( \Rightarrow {t_A} = {t_B} - 6 \Leftrightarrow {t_B} - {t_A} = 6\)

Đổi \(v = 1{\rm{ }}236{\rm{ }}km/h{\rm{ }} = \frac{{\;1236}}{{3600}}km/s = \frac{{103}}{{300}}km/s.\;\)

Ta có: \(MA = {t_A}.v;MB = {t_B}.v\)

\( \Rightarrow MB - MA = ({t_B} - {t_A}).v = 6.\frac{{103}}{{300}} = 2,06(km)\)

Như vậy, tập hợp các điểm M là một hypepol nhận A, B làm hai tiêu điểm.

Ta có: \(AB = 16 = 2c \Rightarrow c = 8\); \(\left| {MA - MB} \right| = 2,06 = 2a \Rightarrow a = 1,03\)

\( \Rightarrow {b^2} = {c^2} - {a^2} = {8^2} - 1,{03^2} = 62,9391\)

Vậy phương trình chính tắc của hypebol đó là: (H)  \(\frac{{{x^2}}}{{1,0609}} - \frac{{{y^2}}}{{62,9391}} = 1\)

Do MA < MB nên M thuộc của nhánh (H) gần A.

Vậy phạm vi tìm kiếm vị trí phát ra âm thanh đó là nhánh gần A của hypebol (H) có phương trình \(\frac{{{x^2}}}{{1,0609}} - \frac{{{y^2}}}{{62,9391}} = 1\).

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Ta có:

\(\overrightarrow {{F_1}M}  = \left( {x + c;y} \right) \Rightarrow {F_1}M = \sqrt {{{\left( {x + c} \right)}^2} + {y^2}} \)

\(\overrightarrow {{F_2}M}  = \left( {x - c;y} \right) \Rightarrow {F_2}M = \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} \)

b) Ta có \(M(x;y) \in (E)\) nên \(\left| {{F_1}M - {F_2}M} \right| = 2a \Leftrightarrow \left| {\sqrt {{{\left( {x + c} \right)}^2} + {y^2}}  - \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} } \right| = 2a\)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Ta có:

\(\overrightarrow {{F_1}M}  = \left( {x + c;y} \right) \Rightarrow {F_1}M = \sqrt {{{\left( {x + c} \right)}^2} + {y^2}} \)

\(\overrightarrow {{F_2}M}  = \left( {x - c;y} \right) \Rightarrow {F_2}M = \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} \)

b) Ta có \(M(x;y) \in (E)\) nên \({F_1}M + {F_2}M = 2a \Leftrightarrow \sqrt {{{\left( {x + c} \right)}^2} + {y^2}}  + \sqrt {{{\left( {x - c} \right)}^2} + {y^2}}  = 2a\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Do \({A_1}{F_1} = a - c\) và \({A_1}{F_2} = a - c\) nện\({A_1}{F_1} + {A_1}{F_2} = 2a\).Vậy \({A_1}\left( { - a;{\rm{ }}0} \right)\) thuộc elip (E).

Mà A (-1; 0) thuộc trục Ox nên \({A_1}\left( { - a;{\rm{ }}0} \right)\) là giao điểm của elip (E) với trục Ox.

Tương tự, ta chứng minh được \({A_2}\left( {a;{\rm{ }}0} \right)\) là giao điểm của clip (E) với trục Ox.

b) Ta có:\({B_2}{F_2} = \sqrt {{{\left( {c - 0} \right)}^2} + {{\left( {0 - b} \right)}^2}}  = \sqrt {{c^2} + {b^2}}  = \sqrt {{a^2}}  = a\).Vì \({B_2}{F_1} = {B_2}{F_2}\) nên\({B_2}{F_1} + {B_2}{F_2} = a + a = 2a\). Do đó, \({B_2}\left( {0{\rm{ }};{\rm{ }}b} \right)\) thuộc elip (E). Mà \({B_2}\left( {0{\rm{ }};{\rm{ }}b} \right)\)thuộc trục Oy nên \({B_2}\left( {0{\rm{ }};{\rm{ }}b} \right)\)là giao điểm của elip (E) với trục Oy.

Tương tự, ta chứng minh được: \({B_1}\left( {0{\rm{ }};{\rm{  - }}b} \right)\)là giao ddiemr của elip (E) với trục Oy.

Như vậy, elip (E) đi qua bốn điểm \({A_1}\left( { - a;{\rm{ }}0} \right)\)\({A_2}\left( {a{\rm{ }};{\rm{ }}0} \right)\)\({B_1}\left( {0; - {\rm{ }}b} \right)\)\({B_2}\left( {0;{\rm{ }}b} \right)\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Ta có: \(M{F_1} = \sqrt {{{\left( {x + c} \right)}^2} + {y^2}} ,M{F_2} = \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} \).Vậy để điểm M thuộc Hyperbol khi và chỉ khi \(\left| {M{F_1} - M{F_2}} \right| = 2a\) hay\(\left| {\sqrt {{{\left( {x + c} \right)}^2} + {y^2}}  - \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} } \right| = 2a\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Đường vừa nhận được là đường “màu đỏ” trong Hình 7.17.

b) Tổng khoảng cách từ đẩu bút đến các vị trí không thay đổi.

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Gọi M là vị trí tàu thu tín hiệu. Gọi \({t_A},{t_B}\) lần lượt là thời gian tín hiệu truyền từ trạm phát A,B đến M. Theo đề bài, ta có \({t_A} - {t_B} =  - 0,0005s\).

Suy ra \(MA - MB = v.{t_A} - v.{t_B} = 292000.\left( { - 0,0005} \right) =  - 146km\).

Gọi (H) là hyperbol ở dạng chính tắc nhận A,B làm hai tiêu điểm và đi qua M. Khi đó ta có:

\(\left\{ \begin{array}{l}2a = \left| {MA - MB} \right| = 146\\2c = AB = 300\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 73\\c = 150\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 73\\{b^2} = {c^2} - {a^2} = 17171\end{array} \right.\)

Vậy phương trình chính tắc của (H) là: \(\frac{{{x^2}}}{{5329}} - \frac{{{y^2}}}{{17171}} = 1\).

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a)  Tọa độ 2 tiêu điểm là: \({F_1}\left( { - c;0} \right),{F_2}\left( {c;0} \right)\).

b) Ta có: \(M{F_1} = \sqrt {{{\left( {x + c} \right)}^2} + {y^2}} ,M{F_2} = \sqrt {{{\left( {x - c} \right)}^2} + {y^2}} \).Vậy để điểm M thuộc Elip thì khoảng cách\(M{F_1} + M{F_2} = 2a\) nên \(\sqrt {{{\left( {x + c} \right)}^2} + {y^2}}  + \sqrt {{{\left( {x - c} \right)}^2} + {y^2}}  = 2a\)