Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \({u_1} = 1200,\;d = 30\).
Dân số sau n năm là: \({u_n} = 1200 + 30\left( {n - 1} \right)\)
Vậy dân số của năm 2030 tức \(n = 1\) là: \({u_{11}} = 1200 + 30\left( {11 - 1} \right) = 1500\) (nghìn người).
Ta có: \({u_1} = 97,\;q = \;1 + 0,91\% = 1,0091\).
Dân số của quốc gia sau n năm là: \({u_n} = 97 \times {1,0091^{n - 1}}\).
Dân số của quốc gia năm 2030 tức \(n = 11\) là: \({u_{11}} = 97 \times {1.0091^{11 - 1}} = 106,197\) (triệu người).
Dân số của nước này sau 20 năm là;
\(A=19\cdot2^{\dfrac{20}{30}}\simeq30\)(triệu người)
Giả sử dân số của quốc gia đó từ năm 2011 đến năm 2021 là dãy số \(\left( {{u_n}} \right)\) với \({u_1} = P\).
Ta có:
\(\begin{array}{l}{u_1} = P\\{u_2} = {u_1} + {u_1}.\frac{a}{{100}} = {u_1}.\left( {1 + \frac{a}{{100}}} \right)\\{u_3} = {u_2} + {u_2}.\frac{a}{{100}} = {u_2}\left( {1 + \frac{a}{{100}}} \right)\\{u_4} = {u_3} + {u_3}.\frac{a}{{100}} = {u_3}\left( {1 + \frac{a}{{100}}} \right)\\ \vdots \\{u_{11}} = {u_{10}} + {u_{10}}.\frac{a}{{100}} = {u_{10}}\left( {1 + \frac{a}{{100}}} \right)\end{array}\)
Vậy dân số các năm từ năm 2011 đến năm 2021 của quốc gia đó tạo thành cấp số nhân với công bội \(q = 1 + \frac{a}{{100}}\).
a) Công thức tính dân số của tỉnh đó: \({S_n} = {u_1}{.1,01^n}\)
b) Dân số của tính đó sau 10 năm:
\({S_{10}} = {2.1,01^{10}} \approx 2,21\) (triệu dân)
Mấy câu trả lời SGK trình bày giúp anh Latex cái hoặc gõ ra nhưng gõ định dạng ấy em. Chứ như thế này anh sợ nhiều người không đọc được chữ ấy, mặc dù anh cũng đọc được.
Ta có:
\(\begin{array}{l}P'\left( t \right) = \frac{{{{\left( {500t} \right)}^\prime }\left( {{t^2} + 9} \right) - \left( {500t} \right){{\left( {{t^2} + 9} \right)}^\prime }}}{{{{\left( {{t^2} + 9} \right)}^2}}}\\ = \frac{{500\left( {{t^2} + 9} \right) - \left( {500t} \right).2t}}{{{{\left( {{t^2} + 9} \right)}^2}}}\\ = \frac{{500{t^2} + 4500 - 1000{t^2}}}{{{{\left( {{t^2} + 9} \right)}^2}}} = \frac{{4500 - 500{t^2}}}{{{{\left( {{t^2} + 9} \right)}^2}}}\end{array}\)
Tốc độ tăng dân số tại thời điểm \(t = 12\) là: \(P'\left( {12} \right) = \frac{{4500 - 500{t^2}}}{{{{\left( {{t^2} + 9} \right)}^2}}} \approx - 2,88\).
Dân số VN năm 2040 là:
\(97.6\cdot\left(1+1.14\%\right)^{20}\simeq122,4\)(triệu người)
Giả sử dân số Việt Nam từ năm 2020 là dãy số \(\left( {{u_n}} \right)\) với \({u_1} = 97,6\).
Ta có:
\(\begin{array}{l}{u_1} = 97,6\\{u_2} = {u_1} + {u_1}.\frac{{1,14}}{{100}} = {u_1}.\left( {1 + \frac{{1,14}}{{100}}} \right)\\{u_3} = {u_2} + {u_2}.\frac{{1,14}}{{100}} = {u_2}\left( {1 + \frac{{1,14}}{{100}}} \right)\\{u_4} = {u_3} + {u_3}.\frac{{1,14}}{{100}} = {u_3}\left( {1 + \frac{{1,14}}{{100}}} \right)\\ \vdots \\{u_n} = {u_{n - 1}} + {u_{n - 1}}.\frac{{1,14}}{{100}} = {u_{n - 1}}\left( {1 + \frac{{1,14}}{{100}}} \right)\end{array}\)
Vậy dân số Việt Nam từ năm 2020 tạo thành cấp số nhân với số hạng đầu \({u_1} = 97,6\) và công bội \(q = 1 + \frac{{1,14}}{{100}}\).
Dân số Việt Nam vào năm 2040 là: \({u_{21}} = {u_1}.{q^{20}} = 97,6.{\left( {1 + \frac{{1,14}}{{100}}} \right)^{20}} \approx 122,4\) (triệu người).
Dân số sẽ gấp đôi dân số của năm lấy làm mốc tính:
\(S=A.e^{r.t}\Rightarrow\dfrac{1}{r}=\ln\dfrac{S}{A}\)
Do \(S_1=2S\Rightarrow t=\dfrac{1}{r}.\ln\dfrac{2S}{S}=\dfrac{1}{r}.\ln2\)
Đáp án B
Tổng số người tăng lên trong năm 2027 là: 1,5(1+1,5%)10 - 1,5(1+1,5%)9 = 25726 người.
Số dân tăng lên này bằng số người sinh ra trừ số người tử vong năm 2027
Do đó trong năm 2027 có 25723 + 2700 = 28426 người.
a) Giả sử dân số của thành phố đó từ năm 2022 là dãy số \(\left( {{u_n}} \right)\) với \({u_1} = 2,1\).
Ta có:
\(\begin{array}{l}{u_1} = 2,1\\{u_2} = {u_1} + {u_1}.\frac{{0,75}}{{100}} = {u_1}.\left( {1 + \frac{{0,75}}{{100}}} \right)\\{u_3} = {u_2} + {u_2}.\frac{{0,75}}{{100}} = {u_2}\left( {1 + \frac{{0,75}}{{100}}} \right)\\{u_4} = {u_3} + {u_3}.\frac{{0,75}}{{100}} = {u_3}\left( {1 + \frac{{0,75}}{{100}}} \right)\\ \vdots \\{u_n} = {u_{n - 1}} + {u_{n - 1}}.\frac{{0,75}}{{100}} = {u_{n - 1}}\left( {1 + \frac{{0,75}}{{100}}} \right)\end{array}\)
Vậy dân số của thành phố đó từ năm 2022 tạo thành cấp số nhân với số hạng đầu \({u_1} = 2,1\) và công bội \(q = 1 + \frac{{0,75}}{{100}}\).
Dân số của thành phố đó vào năm 2032 là: \({u_{11}} = {u_1}.{q^{10}} = 2,1.{\left( {1 + \frac{{0,75}}{{100}}} \right)^{10}} \approx 2,26\) (triệu người).
b) Giả sử sau \(n - 1\) năm thì dân số thành phố đó tăng gấp đôi. Khi đó ta có:
\({u_n} = 2{u_1} \Leftrightarrow {u_1}.{q^{n - 1}} = 2{u_1} \Leftrightarrow {q^{n - 1}} = 2 \Leftrightarrow {\left( {1 + \frac{{0,75}}{{100}}} \right)^{n - 1}} = 2 \Leftrightarrow n \approx 93,77 \Rightarrow n = 94\)
Vậy sau 93 năm thì dân số thành phố đó tăng gấp đôi.
Vậy ước tính vào năm 2115 dân số của thành phố đó sẽ tăng gấp đôi so với năm 2022.