K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Tổng ba góc trong một tam giác bằng 180°. Mà góc H bằng 90° nên tổng hai góc còn lại trong tam giác bằng \(180^\circ  - 90^\circ  = 90^\circ \).

Vậy \(\widehat {AHB} > \widehat {ABH}\).

b) Cạnh đối diện với góc lớn hơn thì có độ dài lớn hơn. Vậy AB > AH (AB đối diện với góc H; AH đối diện với góc B).

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Đường vuông góc kẻ từ A đến BC là: AB

Đường xiên kẻ từ A đến BC là: AM

b) AB < AM (Trong các đường xiên và đường vuông góc kẻ từ 1 điểm nằm ngoài 1 đường thẳng đến đường thẳng đó thì đường vuông góc là đường ngắn nhất.)

c) Vì CB \( \bot \) AB nên khoảng cách từ C đến AB là độ dài CB =  2 cm

21 tháng 12 2016

a/ Vì AH là tia p/g của \(\widehat{BAC}\) (gt)

=> \(\widehat{BAH}=\widehat{CAH}=\frac{60^o}{2}=30^o\)

Vậy \(\widehat{BAH}=30^o\)

b/ Xét ΔAHB và ΔAHK có:

AH: Cạnh chung

\(\widehat{BAH}=\widehat{CAH}\) (AH là tia p/g của \(\widehat{BAC}\) (gt))

AB = AK (gt)

=> ΔAHB = ΔAHK(c.g.c)(đpcm)

c/ Vì ΔAHB = ΔAHK (ý b)

=> \(\widehat{AHB}=\widehat{AHK}\) (2 góc tương ứng)

\(\widehat{AHB}+\widehat{AHK}=180^o\) (kề bù)

=> \(\widehat{AHB}=\widehat{AHK}=\frac{180^o}{2}=90^o\)

=> AH \(\perp\) BK (đpcm)

d/ Xét ΔAHN và ΔAHQ có:

\(\widehat{AHN}=\widehat{AHQ}=90^o\left(gt\right)\)

AH: Cạnh chung

\(\widehat{BAH}=\widehat{CAH}\) (AH là p/g của \(\widehat{BAC}\) (gt))

=> ΔAHN = ΔAHQ(g.c.g)

=> HN = HQ(2 cạnh tương ứng) (1)

\(\widehat{AHN}=\widehat{AHQ}=90^o\left(gt\right)\Rightarrow AH\perp QN\) (2)

Từ (1) và (2)

=> AH là đường trung trực của QN (đpcm)

a: Xét ΔABC có \(\widehat{B}>\widehat{C}\)

nên AB<AC
Xét ΔABC có AB<AC

mà HB là hình chiếu của AB trên BC

và HC là hình chiếu của AC trên BC

nên HB<HC

b: Xét ΔAHB vuông tại H và ΔDHB vuông tại H có

BA=BD

BH chung

Do đó: ΔAHB=ΔDHB

c: Xét ΔBAC và ΔBDC có

BA=BD

\(\widehat{ABC}=\widehat{DBC}\)

BC chung

DO đó: ΔBAC=ΔBDC

Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

b: ΔAHB=ΔAHC

=>góc BAH=góc CAH=50/2=25 độ

c: góc AKC=góc AHC=90 độ

=>AKHC nội tiếp

=>góc KAH=góc KCH

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó: ΔAHB=ΔAHC

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)

hay AH là tia phân giác của góc BAC

b: \(\widehat{BAC}=70^0\)

nên \(\widehat{BAH}=35^0\)

=>\(\widehat{B}=55^0\)

=>BH<AH

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: AD=AE

hay ΔADE cân tại A

24 tháng 1 2018

Câu hỏi của Lê Thu Phương Anh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

18 tháng 12 2018

minh deo biet la j