Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=3x^2-xy-10xy+15y^2+11xy=3x^2+15y^2\)
Nhan xet: \(3x^2\ge0;15y^2\ge0\)
=> \(3x^2+15y^2\ge0\) => \(P\ge0\)
GTNN cua P la 0 khi x=y=0
$P=3x^2-xy-10xy+15y^2+11xy=3x^2+15y^2$
Nhan xet: $3x^2\ge0;15y^2\ge0$
=> $3x^2+15y^2\ge0$ => $P\ge0$GTNN cua P la 0 khi x=y=0
Áp dụng t/c dtsbn:
\(\dfrac{a+b-c}{c}=\dfrac{a-b+c}{b}=\dfrac{-a+b+c}{a}=\dfrac{a+b-c+a-b+c-a+b+c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\)
\(M=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{2a.2b.2c}{abc}=8\)
Hình như bạn nhập sai đề bài rùi , thôi mik sửa theo cách mik thử
Nếu \(\left(\frac{1}{2}\right)^{2x}+1=\frac{1}{8}\)
Ta có: \(\left(\frac{1}{2}\right)^{2x}=-\frac{7}{8}\)
mà \(\left(\frac{1}{2}\right)^{2x}\ge0\forall x;-\frac{7}{8}< 0\)
\(\Rightarrow2x\in\varnothing\Rightarrow x\in\varnothing\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)
Ta lấy vễ trên chia vế dưới
\(=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)
Ta lấy vế trên chia vế dưới
\(=2^3.3=24\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)
1: Xét ΔAEB và ΔCED có
EA=EC
EB=ED
AB=CD
=>ΔAEB=ΔCED
2: ΔAEB=ΔCED
=>góc BAE=góc DCE
=>góc BAE=góc CAE
=>AE là phân giác của góc BAC
Chụp cả đề bài đi
đề