Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2+7y^2+3x-6y=5xy-7\)
\(\Leftrightarrow x^2-5xy+\frac{25}{4}y^2+3x-\frac{15}{2}y+\frac{9}{4}+\frac{3}{4}y^2+\frac{3}{2}y+\frac{3}{4}+x^2+4=0\)
\(\Leftrightarrow\left(x-\frac{5}{2}y\right)^2+2.\left(x-\frac{5}{2}y\right).\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{3}{4}\left(y^2+2y+1\right)+x^2+4=0\)
\(\Leftrightarrow\left(x-\frac{5}{2}y+\frac{3}{2}\right)^2+\frac{3}{4}\left(y+1\right)^2+x^2+4=0\)
Thấy ngay \(VT>0\)
=> Pt vô nghiệm
Sure ?
\(2x^2+7y^2+3x-6y=5xy-7\)
<=> \(16x^2+56y^2+24x-48y=40xy-56\)
<=> \(\left(16x^2-40xy+25y^2\right)+6\left(4x-5y\right)+9+\left(31y^2-18y+47\right)=0\)
<=> \(\left(16x^2-40xy+25y^2\right)+6\left(4x-5y\right)+9+\left(31y^2-18y+47\right)=0\)
<=> \(\left(4x-5y\right)^2+6\left(4x-5y\right)+9+\left(31y^2-18y+47\right)=0\)
<=> \(\left(4x-5y+3\right)^2+\left(31y^2-18y+47\right)=0\)(1)
Mà \(31y^2-18y+47>0\)với mọi y
=> (1) vô nghiệm
Ta có \(2^x+\left(x^2+1\right)\left(y-2\right)\left(y-4\right)=0\)
Mà \(2^x>0,x^2+1>0\)
=> \(\left(y-2\right)\left(y-4\right)< 0\)
=> \(2< y< 4\)
=> \(y=3\)
Thay y=3 vào đề bài ta có:
\(2^x-\left(x^2+1\right)=0\)
=> \(2^x=x^2+1\)
Mà \(2^x\)chẵn với \(x>0\)
=> \(x\)lẻ
Đặt \(x=2k+1\)(k không âm)
Khi đó \(2^{2k+1}=\left(2k+1\right)^2+1\)
=> \(2.2^{2k}=4k^2+4k+2\)
=> \(2^{2k}=2k^2+2k+1\)
+ k=0 => \(2^0=1\)thỏa mãn
=> \(x=1\)
+ \(k>0\)=> \(2^k\)chẵn
Mà \(2k^2+2k+1\)lẻ với mọi k
=> không giá trị nào của k thỏa mãn
Vậy x=1,y=3
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
\(\Leftrightarrow\left(x+2y\right)\left(x-y-3\right)=-2\)
TH1: \(\left\{{}\begin{matrix}x+2y=1\\x-y-3=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+2y=-1\\x-y-3=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=2\end{matrix}\right.\)
TH3: \(\left\{{}\begin{matrix}x+2y=2\\x-y-3=-1\end{matrix}\right.\)
TH4: \(\left\{{}\begin{matrix}x+2y=-2\\x-y-3=1\end{matrix}\right.\)
theo em chắc có thể là như thế này:
xy(6+8+6+3)=2
=>xy23=2
=>xy=2:23
em lm đc đến đây cj có thể lm nốt ko
THẤY J ĐÓ SAI SAI THÌ PHẢI