K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P(x)=x^8-1001x^7+...-1001x+250

=x^8-x^7(x+1)+x^6(x+1)-...-x(x+1)+250

=x^8-x^8-x^7+x^7+...-x^2-x+250

=250-x

=-750

25 tháng 3 2018

P( 1000 ) = 1 

25 tháng 3 2018

P(1000)

= 1 

nha bn

tthay vào mà xem

18 tháng 3 2017

mik nghi tot nhat ban nen tra google nha @@@.com

(^-^)

30 tháng 1 2018

Do x=2017 nên x+1=2018

Với x+1=2018 thì y trở thành

y= x5-(x+1).x4+(x+1).x3-(x+1).x2+(x+1).x-1

= x5- x5-x4+x4+x3-x3-x2+x-1=x-1

Với x=2017, giá trị biểu thức f(x) là

f(2017)=2017-1=2016

Vậy ...

23 tháng 5 2021

Xét đa thức \(F\left(x\right)=ax^2+bx+c\)

\(F\left(0\right)=c=2016\)

\(F\left(1\right)=a+b+c=2017\Rightarrow a+b=1\)  (1)

\(F\left(-1\right)=a-b+c=2018\Rightarrow a-b=2\)  (2)

Từ (1), (2)

\(\Rightarrow\hept{\begin{cases}a+b-a+b=-1\\a+b+a-b=3\end{cases}}\Rightarrow\hept{\begin{cases}2b=-1\\2a=3\end{cases}}\Rightarrow\hept{\begin{cases}b=-0,5\\a=1,5\end{cases}}\)

\(\Rightarrow F\left(2\right)=1,5.2^2-0,5.2+2016=2021\)

Vậy \(F\left(2\right)=2021\).

Ta có

\(F\left(0\right)=2016\)

\(\Leftrightarrow a\cdot0^2+b\cdot0+c=2016\)

\(\Leftrightarrow0+0+c=2016\)

\(\Leftrightarrow c=2016\)

\(F\left(1\right)=2016\)

\(\Leftrightarrow a\cdot1^2+b\cdot1+c=2017\)

\(\Leftrightarrow a+b+c=2017\)

\(\Leftrightarrow a+b+2016=2017\)

\(\Leftrightarrow a+b=1\)       \(\left(1\right)\)

\(F\left(-1\right)=2018\)

\(\Leftrightarrow a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c=2018\)

\(\Leftrightarrow a-b+c=2018\)

\(\Leftrightarrow a-b+2016=2018\)

\(\Leftrightarrow a-b=2\)       \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow a=\left(1+2\right)\div2=3\div2=1.5\)

\(\Rightarrow b=1-1.5=-0.5\)

Vậy \(F\left(x\right)=1.5x^2-0.5x+2016\)

\(\Leftrightarrow F\left(2\right)=1.5\cdot2^2-0.5\cdot2+2016\)

\(=1.5\cdot4-0.5\cdot2+2016\)

\(=6-1+2016=2021\)

Vậy \(F\left(2\right)=2021\)

nhớ k nha

4 tháng 1 2017

Theo đề bài ta có

\(f\left(x\right)=x^{2017}-2016.x^{2016}+2016.x^{2015}-...+2016.x-1\)

Với \(f\left(2015\right)\)thì \(x=2015,x+1=2016\)

\(\Rightarrow f\left(x\right)=x^{2017}-\left(x+1\right).x^{2016}+\left(x+1\right).x^{2015}-...+\left(x+1\right).x-1\)

\(\Rightarrow f\left(x\right)=x^{2017}-x^{2017}-x^{2016}+x^{2016}+x^{2015}-...+x^2+x-1\)

\(\Rightarrow f\left(x\right)=x-1\)

\(\Rightarrow f\left(2015\right)=2015-1=2014\)

Vậy f(2015)=2014